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Modeling and Analysis of Fault Tolerant Multistage
Interconnection Networks

Minsu Choi, Member, IEEE, Nohpill Park, Member, IEEE, and Fabrizio Lombardi, Member, IEEE

Abstract—Performance and reliability are two of the most
crucial issues in today’s high-performance instrumentation and
measurement systems. High speed and compact density multistage
interconnection networks (MINs) are widely-used subsystems in
different applications. New performance models are proposed
to evaluate a novel fault tolerant MIN arrangement, thereby
assuring performance and reliability with high confidence level.
A concurrent fault detection and recovery scheme for MINs is
considered by rerouting over redundant interconnection links
under stringent real-time constraints for digital instrumentation
as sensor networks. A switch architecture for concurrent testing
and diagnosis is proposed. New performance models are developed
and used to evaluate the compound effect of fault tolerant opera-
tion (inclusive of testing, diagnosis, and recovery) on the overall
throughput and delay. Results are shown for single transient
and permanent stuck-at faults on links and storage units in the
switching elements. It is shown that performance degradation
due to fault tolerance is graceful while performance degradation
without fault recovery is unacceptable.

Index Terms—Concurrent fault detection, diagnosis, instrumen-
tation, multistage interconnection network (MIN), performance
analysis, sensor networks.

I. INTRODUCTION

COMMUNICATION between disparate unis is a stringent
requirement in today’s instrumentation and measurement

systems. A variety of these applications can be found in fields
such as energy physics computerized instrumentation [1], par-
allel workload characterization instrumentation [2], virtual in-
strumentation and measurement for distributed data acquisition,
and parallel data processing [3]. One of the most emerging ap-
plications of multistage interconnection networks (MINs) in-
cludes distributed/parallel sensor network, in which MINs are
commonly used as interconnection subsystems between pro-
cessing elements and distributed sensor arrays [4]–[6].

Performance (measured in throughput and delay) and fault
tolerance are two of the most crucial issues in the operation of
these systems [7]–[9]. Also, concurrent testing is stringently
required for complex digital instrumentation such as required
for the control and maintenance of sensor networks. A widely
used subsystem for implementing these systems is the MIN.
MINs are switching subsystems for providing large connectivity
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as well as handling high volume data traffic [10]. Baseline
and Banyan MINs are widely used for their generality and
versatility [8].

Real-time fault detection and diagnosis is yet another require-
ment for high performance instrumentation and measurement
systems; to provide and assure quality-of-service for real-time
data processing and fusion is a necessity due to the large number
of sensors and actuators involved in these systems. In this con-
text, MINs have a primary role [8] and fault detection in either
switching elements or data links is a prerequisite for their re-
liable operation. Fault diagnosis techniques for MINs can be
found in [11]–[13]. In [13], it has been proved that single failure
can be diagnosed and located in MINs with a number of tests
which is dependent of the network size. In [14], it is proved
that baseline interconnection networks in which the number of
input and output lines of a switching element is 2, can be diag-
nosed with a constant number of tests (i.e., independent of net-
work size). Fault diagnosis techniques such as those presented
in [14] and [13] are based on the assumption that only a single
switching element in the MIN is faulty. Further assumptions are
that the MIN provides point-to-point connections, i.e. a path is
established between two processing elements (one located at a
primary input and the other located at a primary output), and
that the MIN is not operational while testing is performed. This
is generally applicable to off-line fault detection. A testing ap-
proach for off-line fault detection in MINs, which is applicable
to packet switching, has been proposed in [12]. This approach
is based on a single stuck-at fault assumption in which a fault
can either prevent packet transmission, or affect the integrity
of the data sent in the packet. The major disadvantages of this
approach are that packet length is considerably increased com-
pared with the case with no detection capability; moreover, the
case of incorrect switching is not considered. [15] and [16] have
dealt with approaches for multiple fault detection and location
of MINs as applicable to manufacturing. An on-line fault detec-
tion technique identifies faults on-the-fly, i.e., while the MIN is
operational without affecting normal operation. In [17], an ap-
proach has been proposed for testing MINs. This approach relies
on the use of signature analyzers for on-line fault detection. This
approach has general applicability and uses an unrestricted fault
model. However, it does not fully accomplish concurrent fault
detection within the MIN operation as a two-phase technique is
implemented for diagnosing various types of single fault. This
may result in a considerable fault latency. [7] also introduced
fault tolerance in MINs by using a minimal number of addi-
tional stages.

To assure performance and reliability, their throughput and
delay in the presence of faults in a MIN must be evaluated and

0018-9456/03$17.00 © 2003 IEEE
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verified at the design phase. Parametric simulation technique
have been proposed for evaluating the performance of MINs
[18]–[23]. However, the many MIN configurations restrict
a broad application of parametric simulation. Occurrence of
faults and introduction of fault tolerance in MINs are additional
hurdles. Thus, analytical modeling has been advocated as
technique to evaluate performance of MINs due to simplicity
and scalability [18], [19]. In [18], throughput and delay of
unbuffered, packet-switched, multipath, multistage networks
have been estimated by approximation techniques such as
probabilistic modeling and Monte Carlo simulation. [19]
has evaluated throughput and delay of single-buffered and
multi-buffered MINs by using queuing analysis. Exact models
for the analysis of shared buffer ATM MINs with arbitrary
traffic distribution has been reported in [24]. Reliability anal-
ysis of a non fault tolerant MINs has been also studied in [25]
However, these works [18], [19], [24], and [25] have analyzed
the performance of MINs without considering the occurrence
of a fault as well as its detection and the recovery capabilities
of fault tolerant MINs.

The objective of this paper is to propose new performance
evaluation techniques for fault tolerant MINs whose operations
involve concurrent fault detection and recovery. To derive
simple yet realistic steady state equations for throughput
and delay of fault tolerant MINs, novel queuing models are
proposed. A fault tolerant MIN architecture with concurrent
fault detection and recovery is also described and evaluated
through the proposed models to further verify its effectiveness
and accuracy. Last, an overhead analysis is provided to justify
the benefit of the proposed fault tolerant MIN.

The organization of this paper is as follows: In Section II, we
presentadiscussionof sensor fusionand the roleofMINs in these
applications. In Section III, a fault tolerant MIN architecture
with concurrent testing and diagnosis is initially proposed. Then,
general assumptions and definitions for performance evaluation
of the proposed fault tolerant MIN architecture are discussed
in Section IV. The performance evaluation of the proposed
fault tolerant MIN in the presence of transient faults with
and without concurrent recovery are given in Sections V and
VI, respectively. Similarly, the performance evaluation of the
proposed fault tolerant MINin the presence of permanent faults
with and without concurrent recovery are shown in Sections VII
and VIII, respectively. Analytical results and discussion are
given in Section IX. Discussion and conclusions are iwithented
n the final section.

II. MIN IN SENSORFUSION APPLICATIONS

In the past, MINs have been commonly utilized to provide
connectivity between processors and memory units [20]. Re-
cently, MIN have been extensively used for different application
domains. Sensor fusion has recently received substantial at-
tention due to its wide applicability to different systems which
have grown in both scale and scope. Sensor fusion refers to
the capability to control, acquire and manipulate data from
different sensors as interface to the outside world. Fusion may
occurs at different levels: data can be either globally or locally
accumulated such that its analysis can be performed to ex-

tract salient features of a specific nature. Sensor fusion poses
stringent requirements in terms of connectivity, real-time op-
eration and modularity [6]. These requirements are related to
the large number of sensors commonly involved in the data
acquisition process. In most cases, the organization of these
sensors changes over time and due to operational conditions;
for example in a satellite, reconfiguration of sensors is of an
absolute concern [4] due to the long mission time and the un-
manned nature of equipment maintenance. Moreover, sensors
may produce large amount of data to account for specific ex-
periments, hence connectivity to computational resources must
be provided well in excess of normal throughput rates. Fusion,
moreover, is not static: the same sensors can be used in many
environments to monitor different parameters [6]. Control of
sensors through actuators adds a further degree of complexity
as data must be shared by multiple processing entities.

Fusion also requires the reliable transmission of information
to/from the sensors; control of the functions and monitoring of
the sensing activities necessitate interconnection methods that
must be easily embedded in hardware [26].

As extensively analyzed in the past [21], a MIN can be uti-
lized to meet these requirements; modularity is accomplished
on a stage basis such that a large number of sensors can be ac-
commodated at modest overhead for scalability. A MIN also can
be configured according to different switching configurations
by simply programming the basic elements (switches) and rear-
ranging the interconnects between them [4]. From a standpoint
of performance, a MIN offers significant advantages: routing
can be on a switched basis, so latency can be substantially re-
duced and local memory can be introduced in the switching el-
ements to facilitate streaming of data over the interconnection
network. This paper address a further feature of a MIN that de-
serves attention in sensor fusion applications, namely its toler-
ance capability in the presence of faults.

III. FAULT TOLERANT MIN A RCHITECTURE

This paper considers multistage interconnection networks of
theBaselinetype [14]; this type of network connects primary
input (PI) lines to primary output (PO) lines using
stages. Each stage is made of a number of switching elements
(SEs). Each SE has two input and two output lines. Therefore,
the number of switching elements per stage is given by.

The proposed fault detection approach is based on a new
format of the message transmitted by the SEs in the MINs. For
the purpose of testability, we add extra subfields to packets.
is parity subfield which is used as general purpose parity check
bits. is checking subfield which consists of two bits.is ad-
dress subfield of bits. It is a position variant
field, where the values of the field to process depend on the stage
where the packet currently resides.is data subfield of data
bits. Thus, a packet is composed of , where
stands for the concatenation operator (commonly used in de-
scribing packets in communication protocols [8]). The two bits
in the subfield achieve the same objective as in [9], namely
to detect a stuck-at fault in a link and to denote the outcome of
the testing process for stuck-at faults in the registers (storing the
data bits of the packets).
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The packet format described above requires the design of an
SE capable of handling the subfields to accomplish concurrent
fault detection. The architecture of the proposed SE is shown in
Fig. 1. The switching element consists of four blocks, as follows.

• block: Selection/acknowledgment block.
• block: Comparison/detection block.
• block: Testing data register/concatenation block.
• block: Routing/switching/C subfield generation block.

The block handles the incoming two packets from the input
lines and (assuming 2 2 SEs) as well as any time-out
condition. In Fig. 1, all registers used in the switching element
are also shown; note again that all these registers operate as
FIFO and are connected to theblock to provide the desired
concatenation for the packets. The incoming packets are divided
into appropriate subfields such that fault detection can occur.
This task is accomplished by the block. The block com-
pares the and subfields of the two packets on a bit-by-bit
basis (note that hereafter the termdisagreementdoes not refer
to the output of an EX-OR gate, but to the difference between
expected and actual values for the two bits either equally posi-
tioned in two string or adjacent). After the packets are processed
in an SE, the first two bits of the subfields of the two packets
are removed. When a disagreement is recorded, aFAIL signal
is issued from each block to block to submit a negative ac-
knowledgment to the preceding SE (consider Fig. 1).

The operation of the proposed switching element is given as
follows: for two incoming packets and (on and , re-
spectively), the subfield of each is checked first and then the
bits in the subfields are received next. These bits are com-
pared; if no disagreement occurs, thebits for the outgoing
packet are subsequently generated by theblock using the
outcome of the data register test. Bits are shifted-in and out of
all registers (thus generating thesubfields for the outgoing
packets), while at the same time thesubfields of the incoming
packets are analyzed for the test of validity of preceding and cur-
rent SEs.

Comparison on a bit-by-bit basis for thesubfields is also
performed. If no fault is recorded by disagreement, the block R
accomplishes the required switching between input and output
lines in the switching element. Thesubfields of the outgoing
packets are thus generated by removing the first two bits of the

subfields of the incoming packets. The switching element is
thus ready to acquire the subfields at the block. These
subfields are concatenated to the previously generatedand

subfields and routed to the appropriate output lines according
to the switching mode of the element.

For the sake of flexible and reliable rerouting, redundant links
are added to the legacy MIN as shown in Fig. 2. Transient or
permanent SE malfunctions can be circumvented by utilizing
them.

IV. GENERAL ASSUMPTIONS ANDDEFINITIONS

In the proposed model, transient faults can be recovered by
resubmission and rerouting. When faults are present in the MIN
without fault recovery scheme, packets which are diagnosed
as faulty, are purged from the system. In the fault diagnosis

Fig. 1. Switching element of the proposed MIN.

process, aFAIL signal is issued from each comparison and
testing block to issue a negative acknowledgment when a fault
(disagreement) is detected.

The analysis is focused on the modeling of fault recovery op-
eration so it is performed at the SE conducting a fault recovery
operation. Virtually, only fault-free packets are included as in-
puts into each SE and faulty packets are excluded from input
into succeeding SE at a constant fault rate at the SE conducting
fault recovery operation.

A new parameter to implicate the effect of faults into the
model is introduced. A constant fault rate for departing
packets from each SE is assumed. The departure rate without
a fault for a nonblocked packet is given bywhich is derived
by . This rate for a nonblocked packet is equal to the
probability of receiving a positive acknowledgment.

Under the assumption of a single fault per packet, only the
affected packet is purged from the system. However, when
faulty packets are found under a multiple fault assumption,
the subsequent stages must purge the corresponding packet
pair from the queue.

When a faulty packet occurs in the first stage of the network,
this may result in a large number of subsequent packets being
purged from the MIN. The closer the packet approaches the pri-
mary outputs prior to the occurrence of a fault, the smaller is the
number of subsequent packets to be purged from the queues.
Therefore, data loss decreases correspondingly as the packet
moves to the latter stages.

Faulty packets are not included in the incoming queue for all
succeeding stages since we assume that they are discarded or
recovered at the driving SE at the rate of and , respectively.
If it succeeds in retransmission for a transient fault, it resumes
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Fig. 2. Proposed fault tolerant MIN with redundant links (16� 16).

its normal routing path. However, if it fails in retransmission, it
is discarded in the nonfault-tolerant MIN or recovered through
rerouting in the proposed fault-tolerant MIN. This creates two
sets of input (throughput) for each queue in an SE.

• : the input rate of normal packets at each queue of an
SE.

• : the input rate of rerouting packets that have been de-
tected to be faulty in the fault-tolerant MIN. Notice that
without recovery scheme, this rate of inputs will be dis-
carded and not included into the input rate.

• : the throughput of normal packets at each queue of an
SE.

• : the throughput of a queue of an SE along the redun-
dant link in the fault-tolerant MIN. Notice that without re-
covery scheme, this rate of throughput will be discarded
and not included into the throughput.

• Hence, total and are composed as and
.

Given an exponential SE fault rate with mean(the number
of faults per unit time), a fault will affect the MIN in one of the
following two ways.

1) At least one packet will have corrupted data in the fields.
These types of faults include faults such as stuck-at-0 and
stuck-at-1 bits.

2) At least one packet will be routed inappropriately due to
a faulty mode in the processing switch.

General network assumptions are summarized as follows.

1) Packets are generated asynchronously at the PIs and suc-
ceeding stages. However, a time boundis imposed on
the arrival time to guarantee the correctness of the in-
coming packets. If a packet does not arrive within, it
is assumed to be corrupt or not sent by the switch in the
preceding stage. The timer generates aFAIL signal for the
timed out packets.

2) The fault rate for each SE is assumed to be constant
throughout the MIN. For each packet, the probability of
a fault in it is constant and independent of the position
of the packet. Hence, the fault rate is equally distributed
on the interconnection network. Cluster faults are not
considered. If the whole MIN system is fabricated on
a single chip, then faults tend to show locality with
respect to defects, so clustering may be considered
consequentially. However, most of today’s MINs are
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Fig. 3. State transition diagram of proposed TFWOR model.

made of independent components, such as switches and
optical interconnects; therefore faults are assumed to be
cluster-free in this paper.

3) To detect more than one bit error, thefield can be ex-
tended and existing error detection code (EDC) or error
checking code (ECC) coding techniques can be employed
to assure the packet data integrity. In practice, in the com-
mercial-grade MINs, the average number of errors in a
packet is well less than one bit. Hence, at most one fault
per packet is assumed in this paper.

Based on the above assumptions, we perform the analysis at
the individual SE level first and recursively analyze each con-
nected SEs for the whole MIN. The states of each queue at an
SE is defined as follows in the proposed model.

• State : the state in which number of packets are pro-
cessed in a normal fashion without any blocking.

• State : the state in whichnumber of packets are blocked
in the queue by thehead of lineeffect due to the blocking
of the heading packet.

• State : the state in whichnumber of packets are blocked
in the queue by thehead of lineeffect since the heading
packet is acknowledged negatively and then trying to re-
submit the packet through the redundant link.

• State : the state in whichnumber of packets are blocked
in the queue by thehead of lineeffect since the heading
packet trying resubmission of a packet through an redun-
dant link is blocked from the new queue in the succeeding
stage.

• State : the state in which number of packets reside
in the queue in the status that the queue currently con-
nected in the succeeding stage is detected to be perma-
nently faulty. Hence, this state plays as a absorbing state
in the presence of permanent faults.

V. PROPOSEDMODEL WITH TRANSIENT FAULTS

WITHOUT RECOVERY (TFWOR)

Basic single-buffer and multi-buffer MIN performance
models are given in [19]. These models are simple and easily
expandable for various versions of MIN operations, especially

for the proposed fault tolerant MIN by adding new states and
adjusting state transition probabilities. The state transition
diagram for TFWOR is shown in Fig. 3 which is extended from
the multi-buffer MIN performance model given in [19] and the
state transition parameters are defined as follows.

• : is the input rate at stageat time
and is the complement of . In TFWOR,

.
• : the throughput of an SE at stageat time . In

TFWOR, .
• : given a constant fault rate of an SE, is defined by

.
• , , , , , , and , , , and , :

are defined the same way as in [19].

Note that
and and

and . Where,
and

; is the number of stage; is the number of
buffers in the buffer module; andis the time. As in [19], ,

are calculated recursively from the last stage followed by
calculations of , , (as defined in [19]). Based on
the proposed TFWOR model, the throughput and delay can be
obtained as follows:

(1)

(2)

VI. PROPOSEDMODEL WITH TRANSIENT FAULTS WITH

CONCURRENTRECOVERY (TFWR)

The states defined in TFWR are the same as TFWOR. We can
effectively evaluate the state transitions by adjusting the state
transition probabilities. The state transition diagram of TFWR
is shown in Fig. 4 and the parameters are defined in the same
way as in TFWOR except that and
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Fig. 4. State transition diagram of proposed TFWR model.

Fig. 5. State transition diagram of proposed PFWOR model.

due to the fault recovery proce-
dure through resubmission. Note that the variations are just the
changes in the state transition probabilities due to the difference
in network operations. Equations (1) and (2) can be used to cal-
culate the throughput and delay of TFWR.

VII. PROPOSEDMODEL WITH PERMANENT FAULTS

WITHOUT RECOVERY (PFWOR)

In PFWOR model, we introduce absorbing statesas shown
in Fig. 5. Once an SE is detected to be faulty, all the packets
passing through it are discarded, since there is no way to recover
the faulty packets. The state transition diagram of PFWOR is

shown in Fig. 5 and , are defined in the same way
as in TFWOR since they both have no fault recovery scheme.

VIII. PROPOSEDMODEL WITH PERMANENT FAULTS

WITH RECOVERY (PFWR)

To evaluate the effect of the fault recovery on the perfor-
mance, we need to introduce extra statesand in PFWR
model as shown in Fig. 6. In this model, the conflicts between
the packets from original and redundant links should be consid-
ered. Each packet either from original or redundant link is as-
sumed to have the same probability (i.e., ) to get through
the conflict.
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Fig. 6. State transition diagram of proposed PFWR model.

Also, note that and are defined as
and since faulty

packets are recovered.
Hence, PFWR is computed by the similar way as in TFWOR

except that the computation of the probability to get through the
conflicts between original link and redundant link is added to
TFWOR.

IX. A NALYTICAL RESULTS AND DISCUSSION

The performance of the MIN in terms of the normalized
throughput and delay has been evaluated by using the proposed
analytical models in the presence of transient and permanent
faults. If the model reaches a steady state throughput, then we
can derive a normalized delay by using theLittle’s Law as in
transient faults case. The terms “Normalized throughput” and

“Normalized delay” are defined in the same way in [19]. The
results of the fault free MIN (fftf in the Figs. 7–12) are based on
the model in [19]. A baseline network with 100 stages, 4 buffer
modules, and 2 2 SE is considered.

Fig. 7–9 show the normalized throughputs of the MIN with
transient faults by varying the value of the fault rate from 0.100
to 0.001.tfwor and tfwr are the plots of TFWOR and TFWR
model, respectively. As expected, at high fault rate (0.1), there
is a great loss in the throughput both in TFWOR and TFWR
cases. However, as the fault rate decreases the loss in throughput
is turning smaller.

In Fig. 10–12, the normalized delays of TFWOR and TFWR
are shown. TFWOR shows that it takes much less delay at high
fault rate due to the discarding of faulty packets which elimi-
nates further conflicts. As the fault rate decreases, the delay of
TFWR increases unlike the situation at high fault rate. TFWR



1516 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 52, NO. 5, OCTOBER 2003

Fig. 7. TF with 0.100 fault rate (throughput).

Fig. 8. TF with 0.010 fault rate (throughput).

always takes longer delay than fault free MIN and TFWOR due
to the delay caused by the retransmission of faulty packets. The
delay of TFWR also decreases as the fault rate decreases.

Figs. 13–15 show the normalized throughputs of MIN with
permanent faults. Due to the unsteady values of the normalized
throughputs, we don’t evaluate the normalized delays for the
MIN with permanent faults. The normalized throughputs are
time-dependent values and they are reaching the whole system
failure in the long run. Hence, we look into the speed of the
decrease of the throughput versus time, and compare those of
PFWOR and PFWR cases.

At a high fault rate (i.e., ), both PFWOR and PFWR lose
most of their throughputs; and as the fault rate decreases, they
sustain some throughput which is reaching the whole system
failure in the long run. At the fault rate of 0.01, PFWOR still
loses most of its throughput. However, PFWR is achieving much
higher throughput than that at 0.10 fault rate. At the fault rate

Fig. 9. TF with 0.001 fault rate (throughput).

Fig. 10. TF with 0.100 fault rate (delay).

of 0.001, PFWOR gets even much higher throughput in such a
way that as the input load increases the peak throughput value
is getting higher up to some almost saturated point. However,
PFWOR still gets much less throughput and the speed of de-
creasing of the throughput is much higher than that of PFWR.

It can be observed that the analytical results of PFWOR and
PFWR that at a certain fault rate (0.001), the proposed PFWR
can enhance the performance greatly even with the extra con-
flicts caused by the recovery procedure and can further delay
the whole system failure time greatly.

The overhead analysis on the proposed fault tolerant MIN is
provided as follows.

1) Hardware Overhead: is mainly caused by the D block.
This block consists of various multiplexers, few flip-flops
(to generate theFAIL signal) and various comparators for
bit-by-bit comparison of the appropriate subfields in the
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Fig. 11. TF with 0.010 fault rate (delay).

Fig. 12. TF with 0.001 fault rate (delay).

incoming packets. If circuit complexity is calculated on a
gate count basis, the block accounts for only 6.2% (for

) and 4.9% increase (for ) approximately for
(where is the number of bits in the subfield in

a packet). This is a reasonably acceptable overhead.
2) Message Overhead: is caused by the additional number of

bits in a packet compared with a packet with no fault de-
tection. In the new packet format, the added bits are only
the 2 bits in the subfield and 3 in the subfield be-
cause the and subfields are also present in a packet
with no fault detection capabilities. This is independent of

and . Hence, the message overhead ratio is given by
. Table I shows the value

of this overhead ratio (in percentile) for different values of
d and N. The overhead ratio is reduced for larger values
of d and N. Note that for the approach of [12]

Fig. 13. PF with 0.100 fault rate and input load 0.9 (throughput).

Fig. 14. PF with 0.010 fault rate and input load 0.9 (throughput).

, while for [17] it is dependent
on the length of the signature.

3) Transit Delay Overhead: is directly proportional to two con-
ditions, i.e. the number of bits and the required processing
for concurrent fault detection. For the first condition,
the delay overhead is equal to as presented in
Table I. For the second condition, additional transit delay is
accounted for the comparison operation in theblock as
well as for testing the registers in block. As the proposed
SE operates in a pipeline mode for all bits of the incoming
packets, comparison takes a single gate delay.

4) Fault Latency: is given by one transmission delay between
stages as a fault is detected in at least one SE of the next
stage. This differs from previous approaches [11] in which
a fault is detected at the primary outputs of the MIN.

5) Hard Core Component: the proposed approach accom-
plishes concurrent fault detection without utilizing any hard
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Fig. 15. PF with 0.001 fault rate and input load 0.9 (throughput).

TABLE I
OVERHEAD ANALYSIS RESULTS

core element. Concurrent fault detection is accomplished
in each SE following the single faulty element in the
MIN. Therefore, it is not required to provide self-checking
capabilities in each SE.

X. CONCLUSION

This paper has presented new performance models to eval-
uate the fault tolerant MIN as a subsystem in high speed and
density parallel instrumentation and measurement systems. A
switch architecture to realize the concurrent testing and di-
agnosis is shown and then the proposed performance models
have evaluated the compound effect of the proposed fault tol-
erant operations such as testing, diagnosis, and recovery on the
throughput and delay. A concurrent fault detection and recovery
scheme for MINs for single stuck-at faults has been shown
by using a new packet format, switching element architecture,
and its communication protocol, to enable a generic approach
to fault tolerance by resubmission and rerouting over the re-
dundant interconnection links. The MIN achieves concurrent
fault detection with fault secure operation at modest overhead
in message length, fault latency and additional hardware. The
fault recovery procedure based on the proposed concurrent
fault detection approach is implemented on the MIN with low
hardware overhead keeping the number of switching elements

same. Results are shown for single stuck-at transient and per-
manent faults on links and storage units in switching elements.
Both transient and permanent faults have been applied. It is
shown that the performance degradation for the overhead due
to concurrent testing, diagnosis and fault tolerance is quite
graceful at low fault rate while the performance degradation
without fault recovery or with fault recovery at high fault
rate is unacceptable. The proposed work has established a
sound foundation for designing high performance and reliable
parallel instrumentation by using MINs with high confidence
level, thereby ultimately realizing high quality-of-service in
digital instrumentation such as real-time distributed/parallel
sensor network, in which MINs are commonly used as inter-
connection subsystems between parallel processing elements
and distributed sensor arrays.
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