193 research outputs found

    Novel pseudo-aspartic peptidase from the midgut of the tick Rhipicephalus microplus

    Get PDF
    The characterization of Rhipicephalus microplus tick physiology can support efforts to develop and improve the efficiency of control methods. A sequence containing a domain with similarity to one derived from the aspartic peptidase family was isolated from the midgut of engorged female R. microplus. The lack of the second catalytic aspartic acid residue suggest that it may be a pseudoaspartic peptidase, and it was named RmPAP. In this work we confirm the lack of proteolytic activity of RmPAP and investigate it’s non-proteolytic interaction with bovine hemoglobin by Surface Plasmon Resonance and phage display. Moreover we carried out RNAi interference and artificial feeding of ticks with anti-RmPAP antibodies to assess it’s possible biological role, although no changes were observed in the biological parameters evaluated. Overall, we hypothesize that RmPAP may act as a carrier of hemoglobin/heme between the tick midgut and the ovaries

    Radiographic comparison of five different techniques for injection into the distal sesamoid bursa in cattle

    Get PDF
    Summary Numerous techniques for injection into the distal sesamoid bursa (navicular bursa) have been described, especially in equine, but there are few specific descriptions regarding this practice being done in cattle. Five different techniques were compared for injection into the distal sesamoid bursa in cattle including distal plantar approach parallel with the coronary band, proximal plantar approach, distal plantar approach parallel with the sole, abaxial approach, and distal interphalangeal joint injection. The results revealed that the numbers of needle insertion until proper placement is significantly less in the DIPJ and the DPPS techniques compared to the others (P<0.05). Also, based on the times of contrast agent injection after the correct successful needle insertion, there were significant differences between DIPJ with DPPCB, PP30 and the Ab45 techniques (P<0.05). According to the absence of direct communication between the distal sesamoid bursa and distal interphalangeal joint, the placement of the needle through distal plantar approach parallel with the sole was suggested

    Cellular and Matrix Mechanics of Bioartificial Tissues During Continuous Cyclic Stretch

    Get PDF
    Bioartificial tissues are useful model systems for studying cell and extra-cellular matrix mechanics. These tissues provide a 3D environment for cells and allow tissue components to be easily modified and quantified. In this study, we fabricated bioartificial tissue rings from a 1 ml solution containing one million cardiac fibroblasts and 1 mg collagen. After 8 days, rings compacted to <1% of original volume and cell number increased 2.4 fold. We initiated continuous cyclic stretching of the rings after 2, 4, or 8 days of incubation, while monitoring the tissue forces. Peak tissue force during each cycle decreased rapidly after initiating stretch, followed by further slow decline. We added 2 μM Cytochalasin-D to some rings prior to initiation of stretch to determine the force contributed by the matrix. Cell force was estimated by subtracting matrix force from tissue force. After 12 h, matrix force-strain curves were highly nonlinear. Cell force-strain curves were linear during loading and showed hysteresis indicating viscoelastic behavior. Cell stiffness increased with stretching frequency from 0.001–0.25 Hz. Cell stiffness decreased with stretch amplitude (5–25%) at 0.1 Hz. The trends in cell stiffness do not fit simple viscoelastic models previously proposed, and suggest possible strain-amplitude related changes during cyclic stretch

    Performance evaluation of scheduling policies for the DRCMPSP

    Get PDF
    In this study, we consider the dynamic resource-constrained multi-project scheduling problem (DRCMPSP) where projects generate rewards at their completion, completions later than a due date cause tardiness costs and new projects arrive randomly during the ongoing project execution which disturbs the existing project scheduling plan. We model this problem as a discrete Markov decision process and explore the computational limitations of solving the problem by dynamic programming. We run and compare four different solution approaches on small size problems. These solution approaches are: a dynamic programming algorithm to determine a policy that maximises the average profit per unit time net of charges for late project completion, a genetic algorithm which generates a schedule to maximise the total reward of ongoing projects and updates the schedule with each new project arrival, a rule-based algorithm which prioritise processing of tasks with the highest processing durations, and a worst decision algorithm to seek a non-idling policy to minimise the average profit per unit time. Average profits per unit time of generated policies of the solution algorithms are evaluated and compared. The performance of the genetic algorithm is the closest to the optimal policies of the dynamic programming algorithm, but its results are notably suboptimal, up to 67.2\%. Alternative scheduling algorithms are close to optimal with low project arrival probability but quickly deteriorate their performance as the probability increases
    corecore