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Abstract. In this study, we consider the dynamic resource-constrained
multi-project scheduling problem where projects generate rewards at
their completion, completions later than a due date cause tardiness costs
and new projects arrive randomly during the ongoing project execution
which disturbs the existing project scheduling plan. We model this prob-
lem as a discrete Markov decision process and explore the computational
limitations of solving the problem by dynamic programming. We run and
compare four different solution approaches on small size problems. These
solution approaches are: a dynamic programming algorithm to determine
a policy that maximises the average profit per unit time net of charges for
late project completion, a genetic algorithm which generates a schedule
to maximise the total reward of ongoing project and updates the sched-
ule with each new project arrival, a rule-based algorithm which prioritise
processing of tasks with the highest processing durations, and a worst
decision algorithm to seek a non-idling policy to minimise the average
profit per unit time. Average profits per unit time of generated policies
of the solution algorithms are evaluated and compared. The performance
of the genetic algorithm is the closest to the optimal policies of the dy-
namic programming algorithm, but its results are notably suboptimal,
up to 67.2%. Alternative scheduling algorithms are close to optimal with
low project arrival probability but quickly deteriorate their performance
as the probability increases.

Keywords: Dynamic programming · Resource constraint · Project schedul-
ing · DRCMPSP.

1 Introduction

Project management is crucial for many sectors such as engineering services,
software development, IT services, construction and R&D, [8,5,25,1]. However it
is a very challenging enterprise in that only 40% of projects are completed within
time, 46% of projects are completed within their predicted budget and only 36%
of projects realise their full benefit [3]. Many uncertain factors may affect project
execution such as new project arrivals. In this environment, problem size grows
and becomes intractable for an exact solution; thus, approximation algorithms
are generally preferred. This study applies an exact solution method and some
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approximation methods to project scheduling problems under uncertainty and
compare their performances.

”A project is a unique, transient endeavour, undertaken to achieve planned
objectives, which could be defined in terms of outputs, outcomes or benefits.”
[2]. A project consists of a collection of tasks that are connected via network
relationships. A reward is released as the outcome of a project completion. A
project is completed when all of its tasks are processed and an amount of re-
sources (e.g. manpower, equipment) is spent over time to process these tasks.
Completion of the project beyond a pre-determined due date or to lower stan-
dards than agreed may cause penalties and loss of prestige and goodwill which
are collectively called the tardiness cost.

Determining a task processing order to achieve project goals such as comple-
tion in the minimum time or completion within a specific time is called project
scheduling problem (PSP). The PSP is a vast research area which aims at op-
timising of project duration, resource allocation and cost evaluation [16]. In
this area, the resource-constrained project scheduling problem (RCPSP) is one
of the most extensively studied research [6]. The common goal of the RCPSP is
minimising the completion time and genetic algorithm (GA) is the most used so-
lution algorithm for this deterministic problem in the literature [11]. Well-known
RCPSP test problems are available at PSPLIB [13], which is an online RCPSP
library (http://www.om-db.wi.tum.de/psplib).

Companies usually manage multiple projects simultaneously, and the RCPSP
with multiple projects is called resource-constrained multi-project scheduling prob-
lem (RCMPSP) [1]. The RCMPSP is a generalisation of the RCPSP, which is
an NP-hard class optimisation problem; thus, RCMPSP and the other generali-
sation of RCPSPs are also categorised as NP-hard. [7]. Two RCMPSP solution
approaches exist: (1) the first approach combines projects in parallel with a
dummy start-task and a dummy end-task, then solves the problem as a giant
RCPSP, (2) the second approach maintains the multiple projects separately [4].
The general goal of the RCMPSP is minimising the total (for the first approach)
or the average (for the second approach) completion time [4]. A RCMPSP library
named MPSPLIB is available at ”http://www.mpsplib.com/” which contains
sets of problems generated by Homberger [10].

The RCPSP and RCMPSP are static, where the data of project arrival times
and their type are known before the scheduling begins. However, many companies
accept new projects during the processing of ongoing projects [9]. That deviates
from the project plan and leads to missed due dates and associated tardiness
costs [5]. So, instead of focusing only on completion times, projects are modelled
with completion rewards and the objective becomes to maximise the expected
profit which is the difference between expected completion rewards and expected
tardiness costs. The RCMPSP with uncertain project arrivals and deterministic
task durations is called dynamic RCMPSP (DRCMPSP). Two main approaches
are available for the DRCMPSP; (1) reactive baseline scheduling (e.g. [17]), an
approach which generates a baseline schedule and updates it at each project
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arrival which allows usage of the static RCMPSP methods such as the GA for
the DRCMPSP and (2) computation of optimal policies (e.g. [18]).

In this paper, we consider the DRCMPSP with uncertain project arrivals.
We model the problem as an infinite-horizon discrete-time Markov decision pro-
cess (MDP) which is defined by five elements: time horizon, decision state space,
action set, transition function and profit function. We generated task processing
policies for the DRCMPSP using multiple solution methods. First, we used dy-
namic programming value iteration method to maximise the time-average profit.
Second, we used GA to maximise the total completion reward and reactively fixed
the schedule distribution for each project arrivals. Third, we used a rule-based
algorithm (RBA) to generate a policy using the longest task first rule. Finally,
we used worst decision algorithm (WDA) to generate a non-idling policy which
aims to minimise the time-average profit.

We contribute to the literature by (i) developing a DRCMPSP model consid-
ering multi-task project types, extending the work of Melchiors et al. [14] who
only considered single-task projects, (ii) developing an efficient implementation
of the value iteration algorithm in Julia programming language to solve our
model with up to 4 project types, (iii) comparing the (exactly) optimal policy
of value iteration with the above-mentioned benchmark policies to evaluate the
performance gap between solution approaches, and (iv) illustrating that even in
simple problems with 2 or 3 project types, the suboptimality gap of benchmark
policies commonly used in practice (genetic algorithm and longest-task-first rule)
which ignore possibility of new project arrivals is remarkable.

This paper is organized as follows: In section 2, we describe the problem
setting, the MDP model. In section 3, we describe the compared algorithms and
discuss comparison results in section 4. In section 5, conclusion is presented.

2 Methodology

2.1 The problem setting

The DRCMPSP comprises J project types, and the system capacity for each
project type is limited to one. All projects of type j share the same characteristics
such as arrival probability (λj), number of tasks (Ij), task durations (tj,i), project
network, resource usages (bj,i), project due date (Fj), reward (rj) and tardiness
cost (wj).

A project may arrive to the system at any point during the time unit, which
is the duration between two decision epochs. Only one project for each type
may arrive per unit time with probability λj for a project of type j. Projects
are stored in the system until the end of unit time. Then in the next decision
epoch, if the system capacity for newly arrived project type is not full, it will
get accepted to the system. Otherwise, it will get rejected.

A type j project consists of Ij tasks. In this problem, tasks are connected
sequentially with a successor-predecessor relationship, which defines the project
network. Processing task i of project type j requires completion of its predecessor
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Fig. 1. A project network

tasks (Mj,i) which have an earlier place in the project network. An example
project network is shown in Figure 1.

Processing task i from project type j also requires allocation of bj,i amount
of resources during its processing. Only one type of resource is defined in our
model and the amount available is represented by B. The total number of allo-
cated resources cannot be higher than B. The resources are assumed renewable
which means they become reusable after completion of a task to which they were
assigned. The number of resources which are not allocated for task processing
is called free-resources (Bfree

s ). After the completion of a task, its allocated re-
sources return to the free resources.

Task processing is assumed to be non-preemptive; thus, it cannot be paused
or cancelled. i.e., once a task has begun processing, it does not leave processing
until completed.

Projects are completed when all of their tasks are processed, and a project
reward rj is earned. Projects have a due date (Fj) which represents the maximum
unit of time which can be spent for project completion to obtain its full reward
rj . If the due date is exceeded, the tardiness cost wj is applied only once, after
the project is completed.

2.2 Decision State

The decision state (s) represents the system information relevant to the decision-
making process at each decision epoch [21]. Decision states where the resource
limitations are not exceeded and predecessor tasks were completed before their
successor tasks are called feasible and the set of all feasible decision states is
called as the state space S. Elements of a decision state (s = {P 1,P 2 . . . ,P J})
are project states (P j) for all project types. A project state consists of task states
(xj,i) and the remaining due date state (dj) (P j = (xj,1, xj,2, . . . , xj,Ij , dj)).

A task state (xj,i ∈ {−1, 0, 1, 2, . . . , tj,i − 1}) represents the status of a task.
If a task is pending for processing, its value is taken as −1. If a task is finished,
its value is represented by 0. If a task is in processing, its value is the remaining
processing time to its completion.

The remaining due date state (dj ∈ {0, 1, 2, 3, . . . , Fj}) represents the number
of remaining time units from the current time epoch to complete the project
j without paying any tardiness cost. When a due date is exceeded, its value
becomes 0 and it expresses that the tardiness cost will be incurred at the project’s
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Table 1. State Matrix

Remaining Remaining
duration due date
of task i

P
ro

je
ct

j 1 2 3 d
1 x1,1 x1,2 x1,3 d1
2 x2,1 x2,2 x2,3 d2

completion. A newly accepted project has the highest remaining due date state
value which is its due date Fj .

When a type j project is completed or there is no type j project in the system
(P j = (0, 0, . . . , 0, 0)), all task states (xj,i = 0,∀i) and remaining due date state
(dj = 0) of project type j are represented by 0.

When a new type j project arrives (P j = (−1,−1, . . . ,−1, Fj)), all its task
states are set to −1 (xj,i = −1,∀i) and its remaining due date state is represented
by its due date Fj (dj = Fj).

An example state matrix with two projects and three tasks is shown in Ta-
ble 1. Here, rows of the matrix represent each project type j. The columns
represent the task numbers but the last column of the matrix represents the due
date state (dj).

A decision state determines its free resources (Bfree
s ) which is used as a con-

straint for the available decisions. Free resources are the remaining resources
available after the resource allocation to ongoing tasks has been accounted for:

Bfree
s = B −

J∑
j=1

Ij∑
i=1

bi,jI
{
xi,j > 0

}
(1)

Here, B is the total amount of resource, bi,j is the resource amount allocated
for processing of task i from type j project, I

{
.
}

is an indicator function that
takes the value 1 if the condition in parentheses is true and takes the value 0
otherwise.

2.3 Action Representation

The decisions available in a given decision state s is called an action a. At a
decision epoch, the decision maker selects an action a which starts the processing
of the selected pending tasks. An example action matrix with two projects and
three tasks is shown in Table 2. If the decision includes processing a pending
task i of a type j project (xi,j = −1), the corresponding action element aj,i
will take the value of 1 in the action matrix. Otherwise, aj,i will be 0. The
task processing decision can be only taken if there are enough free resources to

allocate (
∑J
j=1

∑Ij
i=1 bi,jI

{
ai,j = 1

}
≤ Bfree

s ) and any predecessor tasks (Mj,i)
of task i are completed (

∑
m∈Mj,i

xj,m = 0). Thus, an action must satisfy both
of these conditions. All the actions which meet both the resource and predecessor
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Table 2. Action Matrix

Task i

P
ro

je
ct

j 1 2 3
1 a1,1 a1,2 a1,3
2 a2,1 a2,2 a2,3

limitations, are called feasible and set of all feasible actions for a decision state
s creates the action set (A(s) = {0,a′

,a
′′
, . . . }).

The action, where all action elements are zero ”do not initiate any task”
(0 = (0, 0, . . . , 0)) and it is always a member of the action set 0 ∈ A(s). a

′
and

a
′′

represent alternative feasible actions. The number of alternative actions in
an action set depends on the number of free resources (Bfree

s ), the unprocessed
tasks (with xi,j = −1) and the tasks with completed predecessor tasks (with∑
m∈Mj,i

xj,m = 0).

2.4 Transition function

The transition function describes how the system evolves from one state to an-
other as a result of decisions and information [19]. The period between two
consecutive decision states is the time unit. During the transition period; the
ongoing tasks are processed for one time unit, some tasks are completed and
new projects may arrive according to arrival probabilities λj . The project ar-
rival probability is considered when a project is to be completed before the next
decision epoch (i.e., the system capacity for type-j project will become available).
The transition function is defined in Equation 2.

P (s′|s, a) =

J∏
j=1

Ij∏
i=1

P (x′j,i|xj,i) (2)

P (x′j,i|xj,i) =



λj , for 0 ≤ xj,i ≤ 1, x′j,i = −1, i = Ij

λj , for xj,i = −1, aj,i = 1, x′j,i = −1, i = Ij

1− λj , for 0 ≤ xj,i ≤ 1, x′j,i = 0, i = Ij

1− λj , for xj,i = −1, aj,i = 1, x′j,i = 0, i = Ij

1, for xj,i ≥ 2, x′j,i = xj,i − 1, i = Ij

1, for xj,i = −1, aj,i = 0, x′j,i = −1, i = Ij

1, for xj,i ≥ −1, x′j,i ≥ −1, i < Ij

In Figure 2 an example transition process has been shown. The transition prob-
ability of the first alternative future decision state, where the last task of type
j project is finished and a new type j project arrived, is P (s′′|s, a) = λj . The
transition probability of the second alternative future decision state, where the
last task type j project is finished and no project arrived, is P (s′|s, a) = (1−λj).
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Fig. 2. A state transition diagram (for a j = 1 type project with 3 tasks (i = 1, 2, 3)
whose due date is Fj = 9 and the selected action means do not initialise any task.)

2.5 Profit Representation

The profit function (Rs,a) is the sum of rewards (rj) of completed projects in
the period between current and next decision epoch minus the tardiness cost of
late completions which depend on the remaining due dates.

Rs,a =

J∑
j=1

rjE
[
I
{
xj,I = 1 ∨ (xj,I = −1 ∧ aj,I = 1 ∧ tj,I = 1)

}]

−
J∑
j=1

wjE
[
I
{
xj,I = 1 ∨ (xj,I = −1 ∧ aj,I = 1 ∧ tj,I = 1) ∧ dj = 0

}]
(3)

Here, the first indicator is for project completion and takes the value 1 if a
project completes and is 0 otherwise. The second indicator is for late project
completion. It takes the value 1 if a project’s due date has already passed (i.e.,
the projects remaining dues date dj = 0) and is 0 otherwise. Recall that, in
decision state s, xj,I represents the remaining processing time of the final task
of a type j project and aj,I its the action element under action a. tj,I is duration
of task i of project type j.

2.6 Goal function

The goal of the DRCMPSP is to find the policy π that maximises the long-term
average profit per unit time.

g∗ = max
π∈Π

lim
T→∞

1

T

T∑
t=1

Eπ[Rs(t),a(t)] (4)
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Here, t is the time epoch. Rs(t),a(t) is the profit function dependent of time
epoch t. π is a policy from the set of all feasible non-anticipating policies (Π)
presenting the action set A(s). A feasible policy is a sequence of action which
considers both the resource limitation and project network.

2.7 Solution by Dynamic Programming

Dynamic Programming is a collection of algorithms which calculates optimal
policies from the MDP model of the solution environment [23]. In this research
we used Dynamic Programming Value Iteration. Value Iteration calculates a se-
quence of value functions [24]. The value function approximates the cumulative
reward minus the tardiness cost. The per-period change in the value function
approximates the maximum long-term average profit. The process steps of the
algorithm are below;

For each state ∀s ∈ S, V old(s) = 0
Do

For each state ∀s ∈ S
V (s) = max

a∈A
[Rs,a +

∑
s′∈S p(s

′|s, a)V old(s′)]

End For
Wmax = max

s∈S
[V (s)− V old(s)]

Wmin = min
s∈S

[V (s)− V old(s)]
∆ = Wmax −Wmin

Update for ∀s ∈ S, V old(s) = V (s)
While ∆ > β ×Wmin

Here, V represents the value function of a decision state s. Rs,a is profit function
as explained in subsection 2.5. p(s′|s, a) is the state transition probability. s′

stands for the future decision state of s. V old(s′) is the value of s′ from next
decision epoch. β is pre-specified tolerance number (0.000001). Wmin and Wmax

are respectively minimum and maximum value changes between two iterations.
∆ is the difference between the minimum and the maximum value changes. S is
the state space which is defined at subsection 2.2. These processes are repeated
until the stopping criteria is met.

3 Results and Comparisons

We used two heuristic algorithms with reactive scheduling and one worst deci-
sion algorithm to compare their performance to optimal. A reactive scheduling
method generates decisions within a deterministic approach without considering
the future uncertainties [17]. Then, it iteratively fixes its first schedule according
to random changes and makes the schedules feasible again [20]. We used a genetic
algorithm and a priority rule algorithm with the reactive scheduling method.
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3.1 Genetic Algorithm

The discrete-time MDP is considered as a reactive scheduling system by gen-
erating a new baseline schedule for each decision state. The baseline schedules
are generated by a genetic algorithm (GA) which seeks to maximise the profit
and minimising the total completion time. We adapted GA from Satic [22]. The
GA is one of the search algorithms which searches for the global optimum on
the solution space by improving the search samples at each iteration [15]. The
GA uses bio-inspired operators (e.g. Elitist selection, Crossover and Mutation)
to develop the population, which is a solution set, in each iteration.

For each decision state, random numbers are assigned to unprocessed tasks,
and this assignment is stored as an individual of the population. Individuals
are created until the population number (here, one hundred) is reached. The
random numbers represent task processing priorities and this method called as
the random key representation. The random keys are converted to a schedule
using the serial scheduling scheme as Kolisch and Hartmann [12] described. Then
the population is ordered according to their total profit and total completion
time.

The first population is iterated one hundred times using the genetic opera-
tors. The best ten percent of the population is transferred to the next popula-
tion without any change, and the rest of the next population is created with the
crossover operator. The crossover operator, firstly, selects two individuals from
the previous population, then, copies some random keys from the first individ-
ual, after that, copies the rest from another individual, and finally, creates a new
individual. The new individual is mutated with a fifty per cent probability be-
fore joining to the next population. The mutation operator randomly selects an
unprocessed task and re-assigns its random number. When the new population
reaches one hundred individuals, the random keys are converted to schedules
with the serial scheduling scheme and the population is ordered again according
to their total profit and total completion time. After the one-hundredth gener-
ation is created; the best schedule is selected as the baseline schedule. Then the
baseline schedule is converted to action.

3.2 Priority rule (Longest task first)

An alternative policy is created with a priority based heuristic algorithm. The
algorithm uses a single-pass priority rule called the longest task first rule. Single-
pass rules generate only one action for the given state. The rule based algorithm
(RBA) prioritises the tasks with the longer processing times and if two tasks
have the same duration, the smallest numbered project type, e.g., project type
1 is prioritised over type 2 or type 3. For each decision state, the algorithm
generates a baseline schedule using the priority rule and the serial scheduling
scheme. Then, the baseline schedule is converted to an action.
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3.3 Worst decision algorithm

A mix of value iteration and priority rule methods are used as the worst decision
algorithm (WDP) which seeks a policy (π′) to get the minimum profit per unit
time.

g′ = min
π′∈Π′

lim
T→∞

1

T

T∑
t=1

Eπ
′
[Rs(t),a(t)]. (5)

Here, π′ is a policy from the set of all feasible non-anticipating active policies
(Π ′) which does not include the ”to do not active any task” (0) actions unless
it is the only possible action in the action set (|A(s)| = 1). Since the reward and
tardiness costs are modelled to be received after project completions, a minimum
profit algorithm without the priority rule (|A(s)| 6= 1 ⇒ 0 /∈ π′) delays project
completions infinitely to halt rewards.

4 Computational results

4.1 Experimental setup

In this section, we explore the limits of DP on the DRCMPSP, and compare its
performance with the two heuristic reactive baseline scheduling algorithms and
one worst decision algorithm. The DP and the compared algorithms are coded
in JuliaPro 1.0.1.1. All tests are performed on a desktop computer with Intel
i5-6500T CPU with 2.50 GHZ clock speed and 32 GB of RAM.

We generate four DRCMPSPs (see Table 3). For each project in the experi-
ment, a project’s tasks are performed in sequential numerical order, i.e., a project
starts with task one which is a predecessor of task two which is a predecessor of
task three. See Figure 1. The problems vary by number of projects, number of
tasks, resource usage, different reward-tardiness cost settings and length of due
date. We call the difference between a project’s due date and the sum of tasks
durations as slack time. This value also varies for each project in the problems.
The total resource capacity is taken B = 3 for all problems.

The first problem has two project types, and each type has two tasks. Project
type two has a higher completion reward and higher tardiness cost with a shorter
slack time. That means while project type two contributes higher reward oppor-
tunities, its late completion is less rewarding compared to the late completion
of the project type one.

The second problem has two project types, and each type has three tasks.
The project type one is as twice as profitable. However, the slack time of project
type one is shorter, so its due date may easily be exceeded leading to tardiness
cost.

The third problem has three projects types, and each type has two tasks.
In this problem, resource capacity allows parallel processing for only up to two
projects increasing the chance of tardiness costs from one project. Only project
type one can be processed with other types.
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Table 3. Problem Parameters

2 projects and 2 tasks problem

Project no Reward Tardiness cost Due date Task no Task duration Resource usage

1 3 1 8 1 2 2
2 2 2

2 10 9 5 1 3 1
2 1 3

2 projects and 3 tasks problem

Project no Reward Tardiness cost Due date Task no Task duration Resource usage

1 12 8 10 1 1 1
2 2 2
3 5 1

2 6 5 15 1 4 1
2 3 2
3 4 1

3 projects and 2 tasks problem

Project no Reward Tardiness cost Due date Task no Task duration Resource usage

1 8 5 10 1 5 1
2 2 1

2 5 3 8 1 1 2
2 3 1

3 20 19 10 1 2 3
2 7 2

4 projects and 2 tasks problem

Project no Reward Tardiness cost Due date Task no Task duration Resource usage

1 18 3 4 1 5 2
2 1 1

2 27 4 5 1 4 2
2 2 1

3 18 5 6 1 3 2
2 3 1

4 18 6 7 1 2 2
2 4 1

*Resource capacities = 3

The fourth problem has four projects types, and each type has two tasks. The
slack times of project types one and two are negative, and project type three’s
slack times is zero and project type four’s slack time is one. Thus most of the
projects will be completed later than their planned due date, and the tardiness
payment will be inevitable.

We test each problem consecutively from 1% to 90% project arrival proba-
bilities, increment by 10%. 0% and 100% arrival probabilities are not used in
this comparison, because 0% arrival probability makes the problem static and
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Table 4. Comparison of the time-average profit deviations from the optimal results of
DP (how much percent lower than optimal results of DP)

Project arrival probability

1% 10% 20% 30% 40% 50% 60% 70% 80% 90%

2 projects and 2 tasks problem

GA 0.7% 6.5% 11.7% 15.4% 18.1% 20.0% 21.2% 21.4% 20.4% 17.0%
RBA 2.1% 19.9% 35.2% 46.1% 53.7% 59.3% 63.7% 67.3% 70.4% 72.7%
WDP 2.8% 25.6% 43.8% 55.4% 62.7% 67.3% 70.2% 72.1% 73.5% 75.5%

2 projects and 3 tasks problem

GA 0.1% 4.9% 13.0% 22.0% 31.1% 39.1% 45.6% 51.6% 58.1% 67.2%
RBA 1.5% 15.3% 25.1% 30.1% 32.3% 32.6% 31.1% 28.2% 23.5% 15.4%
WDP 4.1% 34.3% 49.9% 59.0% 66.4% 72.6% 77.1% 80.2% 82.2% 83.3%

3 projects and 2 tasks problem

GA 0.1% 4.9% 13.0% 22.0% 31.1% 39.1% 45.6% 51.6% 58.1% 67.2%
RBA 1.5% 15.3% 25.1% 30.1% 32.3% 32.6% 31.1% 28.2% 23.5% 15.4%
WDP 4.1% 34.3% 49.9% 59.0% 66.4% 72.6% 77.1% 80.2% 82.2% 83.3%

4 projects and 2 tasks problem

GA 0.0% 1.2% 2.9% 5.8% 6.9% 6.8% 8.0% 11.5% 15.4% 19.0%
RBA 0.4% 6.6% 14.6% 21.4% 25.1% 26.8% 28.7% 31.4% 33.9% 36.1%
WDP 1.4% 21.3% 37.8% 46.2% 50.5% 52.8% 54.8% 57.3% 59.4% 61.5% a

a approximate

100% arrival probability causes a non-ergodic MDP, e.g., the empty state where
no project has arrived cannot be reachable again from any states.

4.2 Discussion

DP suffers from ”the curse of dimensionality” which means, here, the number of
states grows exponentially with the number of tasks in a project, the number of
project types, task durations and due dates, and the large state space becomes
computationally intractable [23]. The model uses the state space as defined in
subsection 2.2. In our experiment, a state space for more than five project types
with two tasks each becomes computationally intractable. Thus the considered
problems are limited to four projects and two tasks.

The results shown in Table 4 illustrate that the GA produces almost optimal
solutions in 1% arrival rate and produces close to optimal solutions with other
low arrival rates. The GA’s results are generally closer to optimum compared
to RBA for the majority of the considered problems and their task duration
variations. The GA’s results were from 0.003% to 67.2% lower than the optimum
results but never exactly the same.

The RBA’s results are between the GA and the WDP for most of the test
problem. The RBA’s results were from 0.4% to 72.7% lower than the optimum
results. In three projects with two tasks problem, the RBA produced better
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results than the GA at higher arrival probabilities. However, in most of the cases,
its results were closer to the WDP than the optimum since the used priority rule
is not designed for reward maximising.

Since the GA and the RBA are reactive baseline scheduling algorithms, they
generate decisions without considering the new project arrivals. Thus we may
accept that the result of a reactive baseline scheduling algorithm deteriorates
compared to the optimum as problem deviates from the static assumption i.e.
no project arrivals. However, some anomalies were observed for very high arrival
probabilities. These anomalies occur since the tardiness cost is only paid once
when a project is completed. In the current model, high arrival probabilities lead
to postponing some projects infinitely. Thus, they stay in the system without
causing a tardiness cost while the other projects continue processing without
causing much tardiness cost.

5 Conclusion

In this paper, we studied the resource-constrained multi-project scheduling prob-
lem with uncertain project arrivals. We modelled the problem as an infinite-
horizon discrete-time MDP. New project arrivals happen during the time unit.
We used DP value iteration to maximise the long-term average profit per unit
time. We tested the limits of the DP on the DRCMPSP and generated four
test problems. We used two heuristic reactive baseline scheduling methods and a
worst-decision DP on the same problems and compared their results with exact
results of the DP. We used GA and RBA as heuristic reactive baseline scheduling
methods.

According to our findings, GA produced closer to optimal results than the
simpler heuristic RBA. Since reactive baseline scheduling does not consider the
random changes before they occurred, the GA’s and the RBA’s results are closer
to optimal at low arrival probabilities, and diverge from optimum at the high
arrival probabilities.

In this work, we have seen that DP suffers from the curse of dimensionality
even for the small size problems and reactive baseline scheduling methods do not
produce close to optimum results at the high arrival probabilities. Therefore, as
a future research topic, we suggest to use a technique which will not (or less)
suffer from the curse of dimensionality but will consider the new project arrivals
during the decision phase.
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