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Abstract
The paper introduces anAgent-Oriented Programming (AOP)
framework based on the Belief-Desire-Intention (BDI) model
of agency. The novelty of this framework is in relying on
the Actor model, instantiating each intentional agent as an
autonomous micro-system run by actors. The working hy-
pothesis behind this choice is that defining the agents via
actors results in a more fine-grained modular architecture
and that the execution of agent-oriented programs is en-
hanced (in scalability as well as in performance) by relying
on robust implementations of Actor models such as Akka.
The framework is benchmarked and analyzed quantitatively
and qualitatively against three other AOP frameworks: Jason,
ASTRA and Sarl.
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and simulation; • General and reference → Evaluation;
Performance.
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1 Introduction
Agent-basedmodels have an intuitivemapping to behavioural
descriptions, and for this reason are extensively used for
modeling and simulations of social systems. However, agent-
based programming is not only relevant for simulation. Data-
sharing infrastructures as digital marketplaces exhibit the
double status of computational and social systems; regulating
these infrastructures requires reproducing to a certain extent
constructs similar to those observed in human reasoning (e.g.
For which purpose is the agent asking access to the resource?
On which basis is the infrastructure granting access?). For
traceability and explainability reasons, decisions concerning
actions need to be processed by the infrastructure as much as
relevant operational aspects. Agent-based programming, by
looking at computational agents as intentional agents, pro-
vides this level of abstraction available by design. However,
this raises concerns on how we can efficiently map logic-
oriented agent-based programs into an operational setting,
a problem motivating the present research.

This paper introduces AgentScriptCC, a logic-based AOP
framework in which agents are modular micro-systems run
by actors. To evaluate the feasibility of this approach for fu-
ture developments, a first implementation of AgentScriptCC
based on Akka runnig on JVM is compared with three other
relevant AOP frameworks (Jason [4], ASTRA [13] and Sarl
[13]) by means of 3 benchmarks (token ring, chameneos re-
dux and service point), known to capture relevant patterns in
concurrent applications. This performance evaluation shows
that despite its relative youth and the new implementation
approach, AgentScriptCC is competitive against existing
frameworks, making it worthy of further investigation.
The paper proceeds as follows: Section 2 provides some

background on relevant concepts and related works. Section
3 presents the AgentScriptCC framework. Section 4 reports
on the empirical experiments comparing AgentScriptCC
with other frameworks. Section 5 compares the frameworks
qualitatively. A note of future developments ends the paper.
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2 Background
2.1 Agent Oriented Programming
Agent-Oriented Programming (AOP) is a programming par-
adigm that uses mental attitudes to model autonomous com-
putational agents. Introduced in 1993 by Shoham [27], it has
attracted increasing attention ever since and is believed to
provide an effective abstraction to approach complex soft-
ware systems (e.g. [26]). In the beginning it was presented
as a specific version of Object Oriented Programming (OOP):
whereas object classes contain arbitrary components, agent
types share the same types of mental states and of structural
relationships/mechanisms involving those states.

2.2 Belief-Desire-Intention (BDI) Model
Having its roots in a theory of mind [5], and so referring
to categories that are used typically to address human be-
haviour to describe agents, the belief-desire-intention (BDI)
model [25] has been extensively investigated as basis to rep-
resent computational agents that exhibit rational behaviour
[16]. Beliefs are the factual (and possibly inferential) infor-
mation the agent has about itself or its environment. Desires,
in their simplest form, are objectives the agent wants to ac-
complish. Intentions are the courses of action the agent has
committed to. In practice, BDI agents include concepts of
Goals and Plan. Goals are instantiated desires and plans are
abstract specifications relating a goal to the means of achiev-
ing that goal (intentions become commitment towards plans).
Multiple programming languages and frameworks have been
introduced based on the BDI model, as AgentSpeak(L)/Jason
[4, 24], 3APL/2APL [10], GOAL [19] and IMPACT [14].

2.3 Actor Model
The Actor model, introduced in [18], is a mathematical the-
ory that treats actors as the primitives of computation [17].
Actors are essentially reactive concurrent entities. When
an actor receives a message it can send messages to other
actors; spawn new actors; modify its reactive behavior for
the next message it receives. Originally proposed as a tool
for the theoretical understanding of concurrency, the Actor
model serves now as the basis of several production-level
solutions for distributed and asynchronous systems, and for
reactive programming. These solutions include: Akka [15],
a library developed for the JVM environment, enriched by a
strong community with multiple complementary tools for
distributed environments and stream processing; the C++
Actor Framework (CAF) [7], a library for creating concurrent
programs in C++; Pony [8, 9], an actor language for building
robust parallel systems by providing data-race free isolation
for actors. A comprehensive overview and benchmark over
these works can be found in [3].

2.4 Related Work
Multiple AOP and BDI frameworks have been introduced
proposing diverse approaches towards language, execution

model, reasoning process, etc. Jason [4] is plausibly the most
known (e.g. it is the most used choice in the Multi-Agent
Programming Contest [11]), and has been constantly devel-
oped in the last 15 years. It is implemented in Java and is
essentially an interpreter for a logic-based DSL, namely an
extended version of AgentSpeak(L) [24]. Two recent frame-
works inspired by Jason are Pyson [1] and LightJason [2].
Pyson is an interpreter implemented in Python and uses
MapReduce technology as execution infrastructure in order
to achieve better scalability specifically w.r.t. the number of
agents. LightJason is a BDI framework based upon a variation
of AgentSpeak(L) and whose interpreter aims to improve the
scalability of Jason by implementing a concurrent platform
following best practices in software engineering.

ASTRA [13] is yet another framework inspired by AgentS-
peak(L)/Jason and is also implemented in Java, but, unlike
Jason, it is not an interpreter. ASTRA relies on a compilation
approach: through a build pipeline the DSL is first translated
to pure Java code and then the Java code is compiled to byte-
code for execution. In contrast, the Sarl [26] framework has
not been introduced as a BDI platform and then it does not
use the same abstractions. Nonetheless it is an AOP frame-
work written in Java that also uses compilation, and for these
reasons it is relevant for the current study.
Although several AOP/BDI frameworks have been intro-

duced in the recent years (all hinting to problems of scalabil-
ity), there is a small amount of empirical data available about
how they perform in comparison to each other. The most
notable exception is [6], in which multiple actor and agent
frameworks (2APL [10], GOAL [19], Jason and Akka) are
benchmarked. Their results showed that Jason outperformed
other BDI frameworks by far and scaled almost on par with
Akka. However, at that time (2013), none of these newer
frameworks had been introduced yet, and Akka had not the
support it has today. Strangely enough, none of these new
AOP frameworks has the Actor model at their foundation.
The present paper aims to investigates part of this gap.

3 AgentScriptCC
The AgentScriptCC framework consists of: (a) a logic-based
Agent-Oriented Programming DSL; (b) an abstract execu-
tion architecture; (c) a translation method that generates
executable models from models specified by the DSL; (d)
tools that support the execution of models. We provide here
a brief overview on these components.

3.1 AgentScriptCC DSL
The AgentScriptCC DSL has a very close syntax to AgentS-
peak(L) language and includes some of the extensions pro-
vided by Jason. The main components of the DSL are (1) ini-
tial beliefs, (2) inferential rules, (3) initial goals, and (4) plan
rules. The initial beliefs and goals express the mental state
of the agent at the start of the execution. Initial beliefs are
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Figure 1. AgentScriptCC execution architecture

a set of Prolog-like facts, and the initial goals designate the
first intentions to which the agent commits. Inferential rules
are potentially non-grounded declarative rules (Prolog-like),
used to infer beliefs from beliefs. Plan rules are potentially
non-grounded reactive rules in the form 𝑒 : 𝑐 ⇒ 𝑓 that map
different internal events (e.g, goal adoption, belief-update)
or external events (e.g, message reception, perception) to a
sequence of executable steps called the plan body which the
agent has to perform in response to the event. When a plan
body 𝑓 is matched with an event 𝑒 , it is said that 𝑓 is rele-
vant for 𝑒 . Each plan also has a context condition 𝑐 which
is a Prolog-like expression. When a plan 𝑓 is relevant for 𝑒
and also 𝑐 holds, it is said that the 𝑓 is applicable for 𝑐 . The
steps of a plan body can include belief query, belief update,
sub-goal adoption, primitive actions, variable assignment,
and control flow structures (loops and conditionals).

3.2 AgentScriptCC Execution Architecture
In contrast to AgentSpeak(L)/Jason, the execution architec-
ture of AgentScriptCC agents is based on the Actor model.
Each agent consists of multiple actors with different roles:
(i) an Interface actor, (ii) a Belief Base actor, (iii), an In-
tention Pool actor and (iv) 𝑁 ≥ 1 Intention actors. Each
agent has also non-actor components: (1) a plan library, and
(2) one or more belief bases.

The plan library of the agent consists of a set of plan rule
objects in the form {e,c,f}, where e is an object that can
be matched and unified with event messages to determine
if a plan rule is relevant for that event, c is an expression
object that can be sent to the Belief Base actor to determine
if the plan is applicable and f is a function representing the
body of the plan.

The belief base(s) of the agent can be in practice any type
of storage technology. To interface an arbitrary belief base
into the agent architecture a translation function needs to
be implemented for mapping the query messages into the
queries of that belief base and vice versa, translating the
responses into result messages.1

1For the benchmarks presented in this work we used a lightweight open-
source Prolog reasoning engine implemented in Scala called Styla, available

3.2.1 InterfaceActor. The Interface actor acts as themain
entity of the agent. It initializes the Belief Base and Intention
Pool actors and then sends the initial beliefs and inferential
rules to Belief Base actor as assert messages and initial goals
to Intention pool actor as achieve messages. This actor is
the only component of the agent that is accessible from the
environment and the other agents: all incoming messages
and events must go though this actor and any message sent
from this agent will indicate the Interface actor as the sender
of message. When the Interface actor receives a newmessage
𝑚, based on the type of the message it will either process
it itself if𝑚 is a control messages, (e.g, halt), forward it to
Belief Base actor if𝑚 is an assert message (e.g, perception) or
forward it to Intention Pool actor if𝑚 is an achieve message
(e.g, request).

3.2.2 Belief Base Actor. The Belief Base actor maintains
the connection between other components of the agent and
any data storage/reasoning engine that is used as the belief
base. This actor accepts query messages (retract, assert and
unify) and responds with result of the query. The technology
of the data storage(s) is abstracted behind this actor and it
can be changed by the programmer without affecting the
rest of the framework.Apart from processing queries, the
Belief Base actor also feeds back belief-update events to the
Interface actor. The semantics of when these events should
be created are externalized to the core of architecture and
can be programmable by the designer.

3.2.3 Intention Pool actor. The Intention Pool actor re-
ceives events from the Interface actor and processes them.
To process a received event v, the set of relevant plan rules
{e,c,f} are selected from the plan library by matching and
unifying v against e. Then these relevant plans are fetched
from the plan library and sent to an idle Intention actor. The
Intention pool actor can spawn𝑁 Intention actors, where the
configurable number 𝑁 dictates the number of concurrent
intentions each agent can have at each instant. This actor
uses a prioritized mailbox that sorts the messages based on
the externalized programmable priority function 𝑆𝐸 and a
new event is processed only if there are idle Intention actors
to forward it to. This mechanism makes sure that as long
as there are no resources available, new events stay in the
mailbox to be re-prioritized by 𝑆𝐸 and when an idle Intention
actor becomes available the event with the highest priority
is processed 2.

3.2.4 Intention Actor. An Intention actor is a reusable
unit of execution for the agent. It receives an event v along-
side a set of plan rule objects {e,c,f} from the Intention
Pool actor for execution. The execution consists of three

at https://github.com/fedesilva/styla. The library was minimally modified
and is available at https://github.com/mostafamohajeri/styla.
2In the current implementation, the Intention pool actor exploits the Router
feature of Akka.
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phases: (i) the applicability of each plan rule is checked by
sending a query message containing c to the Belief Base
actor; (ii) from the set of applicable plans, one is selected by
the externalized programmable function 𝑆𝑃 for execution;
(iii) the function f of the selected plan is executed by the In-
tention actor. After the execution of v is completed either by
success or failure status, a message is sent to the actor which
originally requested v containing the completion status and
also a message is sent to Intention Pool actor signaling that
this actor is now idle.

3.3 Translation Method
The translation method is designed to compile the models
specified with the AgentScriptCC DSL described in 3.1 into
agents with the architecture described in 3.2.
For each entity of the DSL, a mapping is defined to gen-

erate the code in the executable underlying language that
can instantiate the objects with the desired semantics at run-
time. The translated entities are then fitted in the abstract
architecture to form an executable agent program.

3.3.1 Terms and Expressions. The AgentScriptCC DSL
uses Prolog-style terms and expressions. In the translation
of an script written in the DSL, each term and expression
(including inferential rules) maps to a Term or Expression
object which encapsulates the parsed data (potentially con-
taining nested Terms and Expressions).

Access to the Lower-Level Language. As consequence of
an approach based on compilation, the DSL provides direct
access to any object or function available in the agent’s name
space3. These lower-level access statements, indicated by
the token #, are translated literally to the same statement
in the underlying language. This capability provides fast
and seamless reuse of libraries already established for the
underlying language.

3.3.2 Initial Beliefs/Goals and Inferential Rules. At
syntactic level, initial beliefs and inferential rules are logic-
style expressions, and as such they translate to an Expression
object counterpart. Initial goals are a combination of a prefix
(!, designating the adoption of a new goal) and a term and
they translate to a Goal object encapsulating the prefix and
a Term object.

3.3.3 Plan Rules. A plan rule < 𝑒, 𝑐, 𝑓 >, should be trans-
lated into the object {e,c,f} which will be part of the plan
library. The triggering event of the plan rule 𝑒 consists of
a trigger (one of +!,-!,+?,+,-) and a term 𝑡 . The triggers
convey the relevance of the plan to different event types
while 𝑡 can be seen as the payload of that event; +! relates to
adoption of a new goal, -! relates to failure of a goal, +? re-
lates to testing if a term holds true, + and - respectively relate

3In the Scala implementation, any object or function which is accessible via
the Java class path.

to assertion and retraction of a belief. The triggering event 𝑒
then translates to an Event object which encapsulates the
trigger and the translated Term object of 𝑡 . The context con-
dition 𝑐 is an expression and translates to an Expression
object. The plan body 𝑓 of a plan rule consist of zero or more
steps. It is translated into a function f, which contains the
steps of 𝑓 as imperative lines of code implemented in it. Each
type of step is translated differently as is described below.

PrimitiveActions. Aprimitive action of the form #f(...)
is translated into a lower-level call to a function f defined in
the underlying language with its respective parameters.

Variable Assignments. Variable assignments in form of
V = exp are used to (re-)assign the result value of an ex-
pression exp to a variable V. AgentScriptCC uses an internal
map-like approach to store variables that also manages vari-
able scopes, meaning that each code block (e.g, plan body,
condition block) holds a map of all variables declared in that
scope which also inherits the variables in its parent scope. A
variable assignment is translated to an append operation for
the variable map by using the 𝑉 as the key and exp as the
value.

Belief Queries. Belief query steps are composed of a pre-
fix +,- and a term 𝑡 . The prefixes respectively mean assertion
and retraction. As the belief base of the agent is abstracted
by the Belief Base actor, a belief query step is a blocking
message to the Belief Base actor containing the prefix and
the Term object of 𝑡 .

Sub-Goal Adoption. Task decomposition is crucial com-
ponent of BDI-like agents and in essence is the ability to
adopt sub-goals depending on the context of a plan. At the
syntactic level, a (sub-)goal adoption is a prefix (e.g, !,?)
plus a term 𝑡 . The prefixes respectively mean achievement
and test goals. In the translation method a sub-goal adoption
step is translated as two phases, (i) a plan selection by using
𝑆𝑃 is done to select and fetch a plan rule object {e,c,f} from
the plan library, (ii) the function f(...) is called with any
parameters that 𝑡 may have as the arguments of f.

Control Flow Structures. The compilation method of
AgentScriptCC supports a straightforward mapping of sim-
ple control flow structures such as loops and conditionals
to their executable counterparts. The translation of these
control structures to the underlying language is performed
one-to-one; for example an if/else in the DSL is simply
translated to an if/else in the underlying language.

3.4 Tools for Execution
The architecture of AgentScriptCC agents is based on ac-
tors and for their execution these actors require an actor
system that spawn and start them. Additionally, a message
transportation layer needs to be specified to enable commu-
nication between agents. The framework remains agnostic
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with respect the transportation layer as long as there is an
interface to convert messages from and to AgentScriptCC’s
message protocol.

Our current implementation of AgentScriptCC is written
in Scala and is based on the Akka framework. In addition to
a compiler4, it includes a minimal infrastructure that is able
to spawn and start the compiled agents5. The transportation
layer makes simply use of Akka’s typed messages, but other
solutions can be easily integrated.

4 Benchmarks
The following section proposes quantitative comparisons be-
tween the AgentScriptCC framework and three other frame-
works: Jason (v2.5), ASTRA (v1.0.0) and Sarl (v0.11.0).
Jason [4] was chosen because, like AgentScriptCC, it uses a
language based on AgentSpeak(L), is implemented in Java
and as reported by [6] potentially outperforms other BDI
frameworks. ASTRA and Sarl are both also implemented in
Java, but, more importantly, like AgentScriptCC, rely on a
compilation approach.
Performance comparison is effectuated by means of two

fairly standard benchmarks (token ring, chameneos redux),
close to what has been presented in [6]. The main differ-
ence w.r.t. [6] is the metrics, as we separate the interpreta-
tion/setup time from the execution time, to present better
insights on how these frameworks operate. An additional
benchmark (service point) was also performed to assess the
ability of the frameworks to allow concurrent decomposition
of tasks inside the agents. The benchmarks were performed
on a Debian GNU/Linux 10 machine with an 8 core Intel(R)
Xeon(R) CPU E5-1620 v4 @ 3.50GHz CPU and 64GB of RAM
using Java version 11 with GraalVM 20 JRE. Each benchmark
was performed 10 times and the JVM was stopped between
each run to avoid the impact of one experiment on the next.
In the first two benchmark scenarios, three metrics are

recorded: (1) total interpretation/setup time, including agent
creation time, (2) internal execution time measured from the
instant that the first agent starts until the completion of the
test, and (3) CPU core load. Execution and data gathering is
controlled by a Python script that runs the benchmarks in
the desired dimensions and records the metrics6.

4.1 Token Ring
The token ring benchmark is a simple program targeting
multiple aspects of parallel frameworks: handling different
number of agents, message passing and level of concurrency
each agent can achieve. The testing scenario consists of𝑊
worker agents, 𝑇 tokens are distributed among the workers,
and each token has to be passed 𝑁 times in a ring. When all

4Source code: https://github.com/mostafamohajeri/scriptcc-translator.
5Source code: https://github.com/mostafamohajeri/agentscript.
6Source code: https://github.com/uva-cci/aop-benchmarks-agere2020.

𝑇 tokens have been passed 𝑁 times, the program ends. To
run this benchmark a program should:

• create𝑊 number of workers;
• each worker should be connected to its neighbor form-
ing a complete ring;

• initially each token 1 ≤ 𝑖 ≤ 𝑇 is assigned to a worker
1 ≤ 𝑗 ≤𝑊 with the equation 𝑗 = 𝑖 ∗ (𝑊 /𝑇 )

• each worker sends the token to its neighbor
The program finishes when all 𝑇 tokens have been passed
𝑁 times.
The experiment was performed by varying𝑊 , 𝑇 and 𝑁

independently within the values {4, 16, 256, 1𝑘, 4𝑘}, resulting
in 125 different configurations for each framework. We also
put a 1minute limit for each execution and anything beyond
that is considered a timeout.

4.1.1 Implementation Notes. In all implementations a
broker agent is present that starts the benchmark by dis-
tributing the tokens and gathers the completed tokens to
stop the execution. There is a difference in the Sarl imple-
mentation. As Sarl does not provide a central agent resolver
to address agents by name, an extra step is implemented in
the broker to iterate over all worker agents and link them
together in a ring.

4.1.2 Results. A summary of the results for this bench-
mark is presented in Figures 2 and 3. In Figure 2, the number
of agents𝑊 is the variable while 𝑁 and 𝑇 are kept constant
with two settings (𝑁 = 256,𝑇 = 256) and (𝑁 = 4𝑘,𝑇 = 4𝑘).
Only Jason and AgentScriptCC were able to execute (𝑁 =

4𝑘,𝑇 = 4𝑘). Sarl was able to only execute the benchmark up
to𝑊 = 256 agents and timed out with a warning7. ASTRA
seemed stable enough to finish the (𝑁 = 4𝑘,𝑇 = 4𝑘) test
but not within 1 minute. ASTRA executes very poorly for
(𝑁 = 256,𝑇 = 256) test, especially with lower number of
worker agents, plausibly because with less worker agents
each agent has more concurrent threads of work to execute.
AgentScriptCC and Jason both perform almost without much
effect w.r.t. number of agents, suggesting that both frame-
works can handle concurrency inside agents to a good extent,
although in all cases Jason performs marginally better.

In Figure 3 another view on the results is presented. This
time the variable is the number of tokens 𝑇 , whereas𝑊, 𝑁

are kept constant in two settings: (𝑊 = 256, 𝑁 = 256) and
(𝑊 = 4𝑘, 𝑁 = 4𝑘). Like in the previous results Sarl could
only finish the (𝑊 = 256, 𝑁 = 256) test. ASTRA was able to
execute the (𝑊 = 4𝑘, 𝑁 = 4𝑘) test but only up to𝑇 = 1𝑘 and
timed out after that. In the (𝑊 = 256, 𝑁 = 256) Jason and
AgentScriptCC performed much better and scaled almost
linearly with the number of tokens which shows that both

7Potentially dangerous stack overflow in java.util.concurrent.locks
.ReentrantReadWriteLock. We suspect this occurs because at the start all
workers need to send a message to the broker to get their neighbors and
the broker can not handle this amount (≥ 1024) of concurrent messages.
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frameworks can handle the increased concurrency and the
higher number of messages to be passed in an efficient man-
ner. On the other hand Sarl and ASTRA performed poorly un-
der the increasing amount of tokens. In the (𝑊 = 4𝑘, 𝑁 = 4𝑘)
test Jason performs marginally better than AgentScriptCC.

CPU Load. Figure 4 and Figure 5 present the average core
load during the token ring test respectively in the𝑊,𝑇 = 256
and 𝑁 = 4096 and in the𝑊,𝑇, 𝑁 = 4𝑘 settings. In the lower
settings (Figure 4) Jason and ASTRA have much less CPU
demand than AgentScriptCC and Sarl. On the other hand,
in the higher setting (Figure 5) the CPU load between Jason
and AgentScriptCC is closer (respectively 85.7% and 88.6%,
vs 57.7% and 77.7% in the lower setting). This can be an
indication that AgentScriptCC has a higher footprint on the
CPU load, especially for initialization time.

To understand how much each framework can distribute
the load between CPU cores we have to look at the standard
deviation of CPU load data. A higher deviation indicates
that the framework is not balancing the load between cores.
ASTRA shows to have very poor load balancing with the
deviation almost as high as the average which can mean that
some of the cores are not even used in execution. Sarl has a
high balancing of cores even in lower setting. In the higher
settings both Jason and AgentScriptCC seem to distribute
the load between CPU cores sufficiently.

Initialization Time. To assess the initialization time, to-
tal execution time is subtracted by the internal execution
time in the lowest setting with 𝑁 = 4𝑘 and 𝑇 = 4𝑘 and the
results are presented for an increasing number of agents in
Figure 6. ASTRA proves to have the fastest initialization,
at least up to 4𝑘 agents, followed by Jason and closely by
AgentScriptCC. Sarl seems to have the slowest initialization
time and scales very badly with the number of agents.

4.2 Chameneos Redux
The second benchmark is adopted from [20] and is a test
intended to capture the effects of one limiting point to the
execution framework. The scenario consists of 𝐶 chameneo
creatures living in the jungle; they can go to a common place
to meet other creatures andmutate with them. Each creature
has a color assigned to it from a color pool and after mutation
its colour changes based on the color of the other creature it
met. These meetings should happen for a total number of 𝑁
times. To run this benchmark a program should:

• create 𝐶 differently colored (blue, red, yellow), differ-
ently named, concurrent chameneo creatures

• write all the possible complementary color combina-
tions;

• write the initial color of each creature;
• each creature will repeatedly go to the meeting place
and meet, or wait to meet, another chameneo;
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Figure 3. Token ring results for each (framework,𝑊, 𝑁 )

• both creatures will change color to complement the
color of the chameneo that they met;

• after 𝑁 meetings have taken place, for each creature
write the number of creatures met and the number of
times the creature met a creature with the same name
(should be zero).

• the program finishes when𝑁 meetings have happened.

The experiment was performed with the set of variables
𝐶 = {64, 256, 1𝑘, 4𝑘} and𝑁 = {1𝑘, 4𝑘, 16𝑘, 64𝑘}. This provide
us with 20 different configurations for each framework. All
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Figure 6. Initialization time in token ring with𝑇 = 4, 𝑁 = 4

tests were given a 1 minute time limit and it is considered a
timeout after that.

4.2.1 Implementation Notes. In all implementations a
broker agent is present that acts as the meeting point for
chameneos. This agent is the main point of this benchmark
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Figure 7. Chameneos redux results for each (framework, 𝑁 )

as it will be constantly under high number of requests from
the chameneos agents.

4.2.2 Results. The first view on the results is presented
in Figure 7. In this setting the number of meetings 𝑁 is kept
constant at two values 4𝑘 and 64𝑘 whilst the number of
chameneos is the variable. The results show that Jason and
AgentScriptCC scale well with the number of agents while
AgentScriptCC performs marginally better in the 𝑁 = 64𝑘
test. Sarl and ASTRA suffer from the higher number of agents
to the point that Sarl could finish both tests only up to𝐶 = 1𝑘
agents while ASTRA finishing 𝑁 = 64𝑘 test only in the
𝐶 = 64 agents setting.

Figure 8 presents another view on the results. This time
the number of chameneos 𝐶 is kept constant at 256 and 4𝑘 ,
whilst the number of meetings 𝑁 is the variable. Sarl could
only finish the 𝐶 = 256 test while ASTRA could only finish
it up to 𝑁 = 16𝑘 and timing out after that. ASTRA was also
only able to finish the 𝐶 = 4𝑘 test with 𝐶 = 64 number
chameneos. AgentScriptCC and Jason both completed the
tests with linear scaling, with AgentScriptCC outperforming
Jason slightly in the 𝐶 = 4𝑘 test. This shows that both Jason
and AgentScriptCC can handle higher levels of concurrency
in the broker agentw.r.t. the increasing number of concurrent
requests.

4.3 Service Point
This last benchmark is not about performance. Rather, it
is designed to illustrate the differences between the execu-
tion in a step-based framework like Jason in contrast to a
compilation-based framework like AgentScriptCC, focusing
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on how they handle actions (namely time-consuming primi-
tive actions) specified outside their DSL. The scenario of this
benchmark consists of one service point and 𝑁 number of
consumers. Each consumer sends 𝑅 requests to the service
point and waits for the response. The service point needs a
random amount of time 𝑡 (0 ≤ 𝑡 ≤ 5000 ms) to process each
request. A simple Thread.sleep(t) is used to mimic thread
time consumption. To run this benchmark a program should

• create 1 service point and 𝑁 service consumers.
• each consumer will send 𝑅 number of requests to the
service point

• the program finishes when all of the 𝑅 ∗ 𝑁 requests
have been responded

The experiment was done only on Jason and AgentScriptCC
with variables 𝑁 = {1, 4, 16} and 𝑅 = {1, 4, 16}. With respect
to total number of request 𝑅 ∗ 𝑁 , this gives us with 5 unique
configurations. To account for the non-determinism added
by the randomization each configuration is executed for 100
times.

4.3.1 Results. The results of this experiment are presented
in Figure 9. Jason performs much worse in this scenario, as
it is not being able to finish the 256 requests within a 200
seconds timeout. This is even more strange as in our setting
Jason is set to use 8 threads and AgentScriptCC to 6 and
by looking at the results we can see that AgentScriptCC is
always using the thread times completely but Jason is not.
The reason for this is that Jason uses a sequential reasoning
cycle inside each agent; at every reasoning cycle, a Jason
agent takes the next step from each of its intentions and
executes them. The reasoning cycle ends when all intentions
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Figure 9. Service point scenario results

execute one step. This means that if in the reasoning cycle
of an agent one of these steps is a time-consuming primitive
action, the whole cycle will be blocked8. On the contrary a
compiled agent does not have any notion of steps at run-time
and the parallelism between intentions of the agent is also
handled by the underlying concurrency model, in this case
the Actor model. This matter is further discussed in 5.3.

5 Discussion
This paper presents and evaluates a framework for an AOP
language based on AgentSpeack(L) relying on compilation.
Compilation in this context is not novel as it has been used
previously by other AOP frameworks like SARL [26] and
ASTRA [13]. The novelty of this work lies in two aspects.
First, unlike SARL and ASTRA, that use a DSL very close
to their underlying language (Java), AgentScriptCC uses a
logic-based DSL close to AgentSpeak(L). As our pipeline
starts from an antlr grammar, in principle the current DSL
can be replaced by any other AOP language that can be
mapped to the AgentScriptCC abstract execution architec-
ture. Second, our approachmaps the DSL into an architecture
that exploits the Actor model. This means that not only the
final executable model is more robust, because it takes advan-
tage of the established concurrency model and the maturity
of the libraries implementing the Actor model (e.g, Akka),
but also that the translation itself is an open process, so its
product becomes in principle more understandable for the
programmer.

5.1 Performance
The execution model of AgentScriptCC is closer to Sarl and
ASTRA than to Jason (see 5.3), but, as shown by the bench-
marks, it is substantially outperforming both Sarl and AS-
TRA. At the same time, AgentScriptCC performance was

8Jason provides extra built-in directives like .wait to mimic unblocking
suspension of intentions but that is beyond the context of this benchmark.
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below what we expected before running these experiments.
Investigating possible causes by profiling the execution of
benchmarks, we found out that a considerable amount of
execution time is spent on the blocking due to synchronized
query calls to the belief base. These calls had to be synchro-
nized because Prolog engines like Styla and tuProlog [12]
(another candidate solution we tested for handling belief
bases) are inherently made for single thread access. Even a
simple read query to a Prolog engine still counts as write
access because of the backtracking. We believe once this
issue is addressed the performances of AgentScriptCC will
greatly improve.

5.2 Language
Although all of the considered frameworks propose DSLs
to program reactive agents, their bases are different. Agent-
ScriptCC’s DSL is based on AgentSpeak(L), which gives to
the language a logic-oriented flavour; this is also the case for
Jason, and both frameworks can take advantage of Prolog-
style terms and expressions. ASTRA’s DSL is also based on
concepts defined in AgentSpeak(L) but with more syntactic
resemblance to Java. Sarl’s language does not try to be a logic-
based language, therefore it does not contain components
corresponding to terms or expressions; it is rather very close
to Java.

5.3 Execution and Parallelism
As a common ground, all these frameworks are used to
specify reactive agents, but they differ in how the agent’s
(re)actions are executed. The most particular solution comes
with Jason which uses the concept of steps. The Jason in-
terpreter treats each symbolic step/instruction in a plan of
a reactive rule as a single unit of execution, and emulates
an imperative program by executing them in a sequence
in consecutive reasoning cycles. In contrast, in the other
three frameworks, the steps of the reactive rules are already
imperative programs ready to be executed. The approach
taken by Jason has important consequences especially when
agents execute multiple parallel threads of work (intentions)
at the same time. This concept is examined more in detail in
section 4 and in [13].

5.4 Access to the Lower-Level Language
One of the motivations behind developing AgentScriptCC
has been to enable access to libraries defined in the under-
lying general-purpose programming language of choice in
a easy and seamless way. In our view this impacts the us-
ability of the framework in larger applications. Leading by
an example, consider a programmer that needs to call the
Java function Thread.sleep(1) in a reactive rule. In Jason
one needs to create an extra class extending one of Jason’s
internal classes (Agent, Action or Environment) and define
a method that wraps this low level function and then call
the wrapping method from the agent program. In ASTRA

it is almost the same as Jason and one needs to create a
class extending the type Module, wrap this function inside
a method, and annotate it appropriately to be able to call it
from the agent program. On the opposite side, this is entirely
different for Sarl and AgentScriptCC, as one can simply call
this function directly from the agent program. In case of
AgentScriptCC this can be done with #Thread.sleep(1).

5.5 Communication
The communication in AgentScriptCC is entirely external-
ized, both for agent-to-agent and agent-to-environment com-
munication. In the current implementation communication
between agents uses Akka’s internal message system but this
can easily be replaced with any other type of communication
mechanism, e.g. by using a message queue (MQ) to be able
to execute the agents in a distributed setting. For the other
frameworks, externalization is possible, but requires specific
wrappers to the communication infrastructures (Jason with
JADE).

6 Conclusion and Future developments
The slowly but steadily increasing interest in programming
languages based on BDI or functionally similar architectures
for virtual assistants, robotics, (serious) gaming, as well as
for social simulations, hints that there is a general consensus
that these solutions might be suitable to reproduce human-
like reasoning, or rather human-intelligible computation.
Historically, the majority of contributions in this area

were concerned mostly by the logical aspects of the prob-
lem rather than its computational aspects [16]. However,
more recent contributions revealed the presence of issues
w.r.t. computational performance and compatibility to mod-
ern environments and tools, motivating efforts to redevelop
existing BDI frameworks according to best practices [1, 2].
Looking at intentional programming in the longer term, we
need to acknowledge that operational settings differ from
the typical low-scale simulation setting in which it is used
today. Besides a difference in scale, components can also be
fully distributed. Because of this, a future target feature of
AgentScriptCC will be the capability to deploy and execute
agents in distributed settings. This seems to be an achievable
objective as there are already approaches available to run
actors in distributed environments.

An initial, additional motivation of using an actor-oriented
architecture for the intentional agents is that by having this
extra level of abstraction the agent become more modular,
enabling the augmentation of agents with complementary
machinery like using AI modules [28], normative reason-
ing modules [22], planning (e.g. HTN, STRIPS) modules [21]
and preference checking modules [23, 29]. Defining ade-
quate interfaces to support the different types of add-ons for
AgentScriptCC agents will be investigated in the future.
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The present work acts as a starting block towards this path.
The benchmarks reported here demonstrates that, despite
the initial maturity level of the framework, AgentScriptCC is
already competitive against existing frameworks, motivating
further exploration.
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