9 research outputs found

    MYBL1 rearrangements and MYB amplification in breast adenoid cystic carcinomas lacking the MYB–NFIB fusion gene

    Get PDF
    Breast adenoid cystic carcinoma (AdCC), a rare type of triple-negative breast cancer, has been shown to be driven by MYB pathway activation, most often underpinned by the MYB–NFIB fusion gene. Alternative genetic mechanisms, such as MYBL1 rearrangements, have been reported in MYB–NFIB-negative salivary gland AdCCs. Here we report on the molecular characterization by massively parallel sequencing of four breast AdCCs lacking the MYB–NFIB fusion gene. In two cases, we identified MYBL1 rearrangements (MYBL1–ACTN1 and MYBL1–NFIB), which were associated with MYBL1 overexpression. A third AdCC harboured a high-level MYB amplification, which resulted in MYB overexpression at the mRNA and protein levels. RNA-sequencing and whole-genome sequencing revealed no definite alternative driver in the fourth AdCC studied, despite high levels of MYB expression and the activation of pathways similar to those activated in MYB–NFIB-positive AdCCs. In this case, a deletion encompassing the last intron and part of exon 15 of MYB, including the binding site of ERG-1, a transcription factor that may downregulate MYB, and the exon 15 splice site, was detected. In conclusion, we demonstrate that MYBL1 rearrangements and MYB amplification probably constitute alternative genetic drivers of breast AdCCs, functioning through MYBL1 or MYB overexpression. These observations emphasize that breast AdCCs probably constitute a convergent phenotype, whereby activation of MYB and MYBL1 and their downstream targets can be driven by the MYB–NFIB fusion gene, MYBL1 rearrangements, MYB amplification, or other yet to be identified mechanisms. Copyright © 2017 Pathological Society of Great Britain and Ireland

    Genomic profiling of primary and recurrent Adult Granulosa Cell Tumors of the Ovary

    Get PDF
    Adult-type granulosa cell tumor (aGCT) is a rare malignant ovarian sex cord-stromal tumor, harboring recurrent FOXL2 c.C402G/p.C134W hotspot mutations in 97% of cases. These tumors are considered to have a favorable prognosis, however aGCTs have a tendency for local spread and late recurrences, which are associated with poor survival rates. We sought to determine the genetic alterations associated with aGCT disease progression. We subjected primary non-recurrent aGCTs (n = 7), primary aGCTs that subsequently recurred (n = 9) and their matched recurrences (n = 9), and aGCT recurrences without matched primary tumors (n = 10) to targeted massively parallel sequencing of ≥410 cancer-related genes. In addition, three primary non-recurrent aGCTs and nine aGCT recurrences were subjected to FOXL2 and TERT promoter Sanger sequencing analysis. All aGCTs harbored the FOXL2 C134W hotspot mutation. TERT promoter mutations were found to be significantly more frequent in recurrent (18/28, 64%) than primary aGCTs (5/19, 26%, p = 0.017). In addition, mutations affecting TP53, MED12, and TET2 were restricted to aGCT recurrences. Pathway annotation of altered genes demonstrated that aGCT recurrences displayed an enrichment for genetic alterations affecting cell cycle pathway-related genes. Analysis of paired primary and recurrent aGCTs revealed that TERT promoter mutations were either present in both primary tumors and matched recurrences or were restricted to the recurrence and absent in the respective primary aGCT. Clonal composition analysis of these paired samples further revealed that aGCTs display intra-tumor genetic heterogeneity and harbor multiple clones at diagnosis and relapse. We observed that in a subset of cases, recurrences acquired additional genetic alterations not present in primary aGCTs, including TERT, MED12, and TP53 mutations and CDKN2A/B homozygous deletions. Albeit harboring relatively simple genomes, our data provide evidence to suggest that aGCTs are genetically heterogeneous tumors and that TERT promoter mutations and/or genetic alterations affecting other cell cycle-related genes may be associated with disease progression and recurrences

    Histologic Classification and Molecular Signature of Polymorphous Adenocarcinoma (PAC) and Cribriform Adenocarcinoma of Salivary Gland (CASG) An International Interobserver Study

    No full text
    Polymorphous adenocarcinoma (PAC) shows histologic diversity with streaming and targetoid features whereas cribriform adenocarcinoma of salivary gland (CASG) demonstrates predominantly cribriform and solid patterns with glomeruloid structures and optically clear nuclei. Opinions diverge on whether CASG represents a separate entity or a variant of PAC. We aimed to assess the level of agreement among 25 expert Head and Neck pathologists in classifying these tumors. Digital slides of 48 cases were reviewed and classified as: PAC, CASG, tumors with >= 50% of papillary architecture (PAP), and tumors with indeterminate features (IND). The consensus diagnoses were correlated with a previously reported molecular alteration. The consensus diagnoses were PAC in 18/48, CASG in16/48, PAP in 3/48, and IND in 11/48. There was a fair interobserver agreement in classifying the tumors (kappa=0.370). The full consensus was achieved in 3 (6%) cases, all of which were classified as PAC. A moderate agreement was reached for PAC (kappa=0.504) and PAP (kappa=0.561), and a fair agreement was reached for CASG (kappa=0.390). IND had only slight diagnostic concordance (kappa=0.091). PAC predominantly harbored PRKD1 hotspot mutation, whereas CASG was associated with fusion involving PRKD1, PRKD2, or PRKD3. However, such molecular events were not exclusive as 7% of PAC had fusion and 13% of CASG had mutation. In conclusion, a fair to moderate interobserver agreement can be achieved in classifying PAC and CASG. However, a subset (23%) showed indeterminate features and was difficult to place along the morphologic spectrum of PAC/CASG among expert pathologists. This may explain the controversy in classifying these tumors

    IDH2 mutations define a unique subtype of breast cancer with altered nuclear polarity.

    No full text
    Solid papillary carcinoma with reverse polarity (SPCRP) is a rare breast cancer subtype with an obscure etiology. In this study, we sought to describe its unique histopathologic features and to identify the genetic alterations that underpin SPCRP using massively parallel whole-exome and targeted sequencing. The morphologic and immunohistochemical features of SPCRP support the invasive nature of this subtype. Ten of 13 (77%) SPCRPs harbored hotspot mutations at R172 of the isocitrate dehydrogenase IDH2, of which 8 of 10 displayed concurrent pathogenic mutations affecting PIK3CA or PIK3R1 One of the IDH2 wild-type SPCRPs harbored a TET2 Q548* truncating mutation coupled with a PIK3CA H1047R hotspot mutation. Functional studies demonstrated that IDH2 and PIK3CA hotspot mutations are likely drivers of SPCRP, resulting in its reversed nuclear polarization phenotype. Our results offer a molecular definition of SPCRP as a distinct breast cancer subtype. Concurrent IDH2 and PIK3CA mutations may help diagnose SPCRP and possibly direct effective treatment. Cancer Res; 76(24); 7118-29. ©2016 AACR

    Homologous recombination DNA repair defects in PALB2-associated breast cancers

    No full text
    Abstract Mono-allelic germline pathogenic variants in the Partner And Localizer of BRCA2 (PALB2) gene predispose to a high-risk of breast cancer development, consistent with the role of PALB2 in homologous recombination (HR) DNA repair. Here, we sought to define the repertoire of somatic genetic alterations in PALB2-associated breast cancers (BCs), and whether PALB2-associated BCs display bi-allelic inactivation of PALB2 and/or genomic features of HR-deficiency (HRD). Twenty-four breast cancer patients with pathogenic PALB2 germline mutations were analyzed by whole-exome sequencing (WES, n = 16) or targeted capture massively parallel sequencing (410 cancer genes, n = 8). Somatic genetic alterations, loss of heterozygosity (LOH) of the PALB2 wild-type allele, large-scale state transitions (LSTs) and mutational signatures were defined. PALB2-associated BCs were found to be heterogeneous at the genetic level, with PIK3CA (29%), PALB2 (21%), TP53 (21%), and NOTCH3 (17%) being the genes most frequently affected by somatic mutations. Bi-allelic PALB2 inactivation was found in 16 of the 24 cases (67%), either through LOH (n = 11) or second somatic mutations (n = 5) of the wild-type allele. High LST scores were found in all 12 PALB2-associated BCs with bi-allelic PALB2 inactivation sequenced by WES, of which eight displayed the HRD-related mutational signature 3. In addition, bi-allelic inactivation of PALB2 was significantly associated with high LST scores. Our findings suggest that the identification of bi-allelic PALB2 inactivation in PALB2-associated BCs is required for the personalization of HR-directed therapies, such as platinum salts and/or PARP inhibitors, as the vast majority of PALB2-associated BCs without PALB2 bi-allelic inactivation lack genomic features of HRD
    corecore