6,898 research outputs found

    Detection of circumstellar CH2CHCN, CH2CN, CH3CCH and H2CS

    Get PDF
    We report on the detection of vinyl cyanide (CH2CHCN), cyanomethyl radical (CH2CN), methylacetylene (CH3CCH) and thioformaldehyde (H2CS) in the C-rich star IRC +10216. These species, which are all known to exist in dark clouds, are detected for the first time in the circumstellar envelope around an AGB star. The four molecules have been detected trough pure rotational transitions in the course of a 3 mm line survey carried out with the IRAM 30-m telescope. The molecular column densities are derived by constructing rotational temperature diagrams. A detailed chemical model of the circumstellar envelope is used to analyze the formation of these molecular species. We have found column densities in the range 5 x 10^(12)- 2 x 10^(13) cm^(-2), which translates to abundances relative to H2 of several 10^(-9). The chemical model is reasonably successful in explaining the derived abundances through gas phase synthesis in the cold outer envelope. We also find that some of these molecules, CH2CHCN and CH2CN, are most probably excited trough infrared pumping to excited vibrational states. The detection of these species stresses the similarity between the molecular content of cold dark clouds and C-rich circumstellar envelopes. However, some differences in the chemistry are indicated by the fact that in IRC +10216 partially saturated carbon chains are present at a lower level than those which are highly unsaturated, while in TMC-1 both types of species have comparable abundances.Comment: 9 pages, 5 figures; accepted for publication in A&

    Theoretical and experimental study of AC loss in HTS single pancake coils

    Full text link
    The electromagnetic properties of a pancake coil in AC regime as a function of the number of turns is studied theoretically and experimentally. Specifically, the AC loss, the coil critical current and the voltage signal are discussed. The coils are made of Bi2Sr2Ca2Cu3O10/Ag (BiSCCO) tape, although the main qualitative results are also applicable to other kinds of superconducting tapes, such as coated conductors. The AC loss and the voltage signal are electrically measured using different pick up coils with the help of a transformer. One of them avoids dealing with the huge coil inductance. Besides, the critical current of the coils is experimentally determined by conventional DC measurements. Furthermore, the critical current, the AC loss and the voltage signal are simulated, showing a good agreement with the experiments. For all simulations, the field dependent critical current density inferred from DC measurements on a short tape sample is taken into account.Comment: 22 pages, 15 figures; contents extended (sections 3.2 and 4); one new figure (figure 5) and two figures replaced (figures 3 and 8); typos corrected; title change

    High-J v=0 SiS Maser Emission in IRC+10216: A New Case of Infrared Overlaps

    Get PDF
    We report on the first detection of maser emission in the J=11-10, J=14-13 and J=15-14 transitions of the v=0 vibrational state of SiS toward the C-rich star IRC+10216. These masers seem to be produced in the very inhomogeneous region between the star and the inner dust formation zone, placed at 5-7 R*, with expansion velocities below 10 km/s. We interpret the pumping mechanism as due to overlaps between v=1-0 ro-vibrational lines of SiS and mid-IR lines of C2H2, HCN and their 13C isotopologues. The large number of overlaps found suggests the existence of strong masers for high-J v=0 and v=1 SiS transitions, located in the submillimeter range. In addition, it could be possible to find several rotational lines of the SiS isotopologues displaying maser emission.Comment: 4 pages, 1 figure, published in the ApJ Letter

    3D Modeling of the Magnetization of Superconducting Rectangular-Based Bulks and Tape Stacks

    Full text link
    In recent years, numerical models have become popular and powerful tools to investigate the electromagnetic behavior of superconductors. One domain where this advances are most necessary is the 3D modeling of the electromagnetic behavior of superconductors. For this purpose, a benchmark problem consisting of superconducting cube subjected to an AC magnetic field perpendicular to one of its faces has been recently defined and successfully solved. In this work, a situation more relevant for applications is investigated: a superconducting parallelepiped bulk with the magnetic field parallel to two of its faces and making an angle with the other one without and with a further constraint on the possible directions of the current. The latter constraint can be used to model the magnetization of a stack of high-temperature superconductor tapes, which are electrically insulated in one direction. For the present study three different numerical approaches are used: the Minimum Electro-Magnetic Entropy Production (MEMEP) method, the HH-formulation of Maxwell's equations and the Volume Integral Method (VIM) for 3D eddy currents computation. The results in terms of current density profiles and energy dissipation are compared, and the differences in the two situations of unconstrained and constrained current flow are pointed out. In addition, various technical issues related to the 3D modeling of superconductors are discussed and information about the computational effort required by each model is provided. This works constitutes a concrete result of the collaborative effort taking place within the HTS numerical modeling community and will hopefully serve as a stepping stone for future joint investigations

    Clues to NaCN formation

    Full text link
    ALMA is providing us essential information on where certain molecules form. Observing where these molecules emission arises from, the physical conditions of the gas, and how this relates with the presence of other species allows us to understand the formation of many species, and to significantly improve our knowledge of the chemistry that occurs in the space. We studied the molecular distribution of NaCN around IRC +10216, a molecule detected previously, but whose origin is not clear. High angular resolution maps allow us to model the abundance distribution of this molecule and check suggested formation paths. We modeled the emission of NaCN assuming local thermal equilibrium (LTE) conditions. These profiles were fitted to azimuthal averaged intensity profiles to obtain an abundance distribution of NaCN. We found that the presence of NaCN seems compatible with the presence of CN, probably as a result of the photodissociation of HCN, in the inner layers of the ejecta of IRC +10216. However, similar as for CH 3 CN, current photochemical models fail to reproduce this CN reservoir. We also found that the abundance peak of NaCN appears at a radius of 3 x 10 15 cm, approximately where the abundance of NaCl, suggested to be the parent species, starts to decay. However, the abundance ratio shows that the NaCl abundance is lower than that obtained for NaCN. We expect that the LTE assumption might result in NaCN abundances higher than the real ones. Updated photochemical models, collisional rates, and reaction rates are essential to determine the possible paths of the NaCN formation.Comment: 7 pages, 10 figures. Accepted for publication in A&A letter

    High-Sensitivity Measurement of 3He-4He Isotopic Ratios for Ultracold Neutron Experiments

    Get PDF
    Research efforts ranging from studies of solid helium to searches for a neutron electric dipole moment require isotopically purified helium with a ratio of 3He to 4He at levels below that which can be measured using traditional mass spectroscopy techniques. We demonstrate an approach to such a measurement using accelerator mass spectroscopy, reaching the 10e-14 level of sensitivity, several orders of magnitude more sensitive than other techniques. Measurements of 3He/4He in samples relevant to the measurement of the neutron lifetime indicate the need for substantial corrections. We also argue that there is a clear path forward to sensitivity increases of at least another order of magnitude.Comment: 11 pages, 10 figure

    Size reduction of complex networks preserving modularity

    Get PDF
    The ubiquity of modular structure in real-world complex networks is being the focus of attention in many trials to understand the interplay between network topology and functionality. The best approaches to the identification of modular structure are based on the optimization of a quality function known as modularity. However this optimization is a hard task provided that the computational complexity of the problem is in the NP-hard class. Here we propose an exact method for reducing the size of weighted (directed and undirected) complex networks while maintaining invariant its modularity. This size reduction allows the heuristic algorithms that optimize modularity for a better exploration of the modularity landscape. We compare the modularity obtained in several real complex-networks by using the Extremal Optimization algorithm, before and after the size reduction, showing the improvement obtained. We speculate that the proposed analytical size reduction could be extended to an exact coarse graining of the network in the scope of real-space renormalization.Comment: 14 pages, 2 figure

    Development and operation of a pixel segmented liquid-filled linear array for radiotherapy quality assurance

    Full text link
    A liquid isooctane (C8_{8}H18_{18}) filled ionization linear array for radiotherapy quality assurance has been designed, built and tested. The detector consists of 128 pixels, each of them with an area of 1.7 mm ×\times 1.7 mm and a gap of 0.5 mm. The small pixel size makes the detector ideal for high gradient beam profiles like those present in Intensity Modulated Radiation Therapy (IMRT) and radiosurgery. As read-out electronics we use the X-Ray Data Acquisition System (XDAS) with the Xchip developed by the CCLRC. Studies concerning the collection efficiency dependence on the polarization voltage and on the dose rate have been made in order to optimize the device operation. In the first tests we have studied dose rate and energy dependences, and signal reproducibility. Dose rate dependence was found lower than 2.5 % up to 5 Gy min1^{-1}, and energy dependence lower than 2.1 % up to 20 cm depth in solid water. Output factors and penumbras for several rectangular fields have been measured with the linear array and were compared with the results obtained with a 0.125 cm3^{3} air ionization chamber and radiographic film, respectively. Finally, we have acquired profiles for an IMRT field and for a virtual wedge. These profiles have also been compared with radiographic film measurements. All the comparisons show a good correspondence. Signal reproducibility was within a 2% during the test period (around three months). The device has proved its capability to verify on-line therapy beams with good spatial resolution and signal to noise ratio.Comment: 16 pages, 12 figures Submitted to Phys. Med. Bio

    Stellar 36,38^{36,38}Ar(n,γ)37,39(n,\gamma)^{37,39}Ar reactions and their effect on light neutron-rich nuclide synthesis

    Full text link
    The 36^{36}Ar(n,γ)37(n,\gamma)^{37}Ar (t1/2t_{1/2} = 35 d) and 38^{38}Ar(n,γ)39(n,\gamma)^{39}Ar (269 y) reactions were studied for the first time with a quasi-Maxwellian (kT47kT \sim 47 keV) neutron flux for Maxwellian Average Cross Section (MACS) measurements at stellar energies. Gas samples were irradiated at the high-intensity Soreq applied research accelerator facility-liquid-lithium target neutron source and the 37^{37}Ar/36^{36}Ar and 39^{39}Ar/38^{38}Ar ratios in the activated samples were determined by accelerator mass spectrometry at the ATLAS facility (Argonne National Laboratory). The 37^{37}Ar activity was also measured by low-level counting at the University of Bern. Experimental MACS of 36^{36}Ar and 38^{38}Ar, corrected to the standard 30 keV thermal energy, are 1.9(3) mb and 1.3(2) mb, respectively, differing from the theoretical and evaluated values published to date by up to an order of magnitude. The neutron capture cross sections of 36,38^{36,38}Ar are relevant to the stellar nucleosynthesis of light neutron-rich nuclides; the two experimental values are shown to affect the calculated mass fraction of nuclides in the region A=36-48 during the weak ss-process. The new production cross sections have implications also for the use of 37^{37}Ar and 39^{39}Ar as environmental tracers in the atmosphere and hydrosphere.Comment: 18 pages + Supp. Mat. (13 pages) Accepted for publication in Phys. Rev. Let

    A high resolution line survey of IRC+10216 with Herschel. First results: Detection of warm silicon dicarbide SiC2

    Get PDF
    We present the first results of a high-spectral-resolution survey of the carbon-rich evolved star IRC+10216 that was carried out with the HIFI spectrometer onboard Herschel. This survey covers all HIFI bands, with a spectral range from 488 to 1901GHz. In this letter we focus on the band-1b spectrum, in a spectral range 554.5-636.5GHz, where we identified 130 spectral features with intensities above 0.03 K and a signal-to-noise ratio >5. Detected lines arise from HCN, SiO, SiS, CS, CO, metal-bearing species and, surprisingly, silicon dicarbide (SiC2). We identified 55 SiC2 transitions involving energy levels between 300 and 900 K. By analysing these rotational lines, we conclude that SiC2 is produced in the inner dust formation zone, with an abundance of ~2x10^-7 relative to molecular hydrogen. These SiC2 lines have been observed for the first time in space and have been used to derive an SiC2 rotational temperature of ~204 K and a source-averaged column density of ~6.4x10^15 cm^-2. Furthermore, the high quality of the HIFI data set was used to improve the spectroscopic rotational constants of SiC2.Comment: A&A HIFI Special Issue, 201
    corecore