656 research outputs found

    MISR stereoscopic image matchers: techniques and results

    Get PDF
    The Multi-angle Imaging SpectroRadiometer (MISR) instrument, launched in December 1999 on the NASA EOS Terra satellite, produces images in the red band at 275-m resolution, over a swath width of 360 km, for the nine camera angles 70.5/spl deg/, 60/spl deg/, 45.6/spl deg/, and 26.1/spl deg/ forward, nadir, and 26.1/spl deg/, 45.6/spl deg/, 60/spl deg/, and 70.5/spl deg/ aft. A set of accurate and fast algorithms was developed for automated stereo matching of cloud features to obtain cloud-top height and motion over the nominal six-year lifetime of the mission. Accuracy and speed requirements necessitated the use of a combination of area-based and feature-based stereo-matchers with only pixel-level acuity. Feature-based techniques are used for cloud motion retrieval with the off-nadir MISR camera views, and the motion is then used to provide a correction to the disparities used to measure cloud-top heights which are derived from the innermost three cameras. Intercomparison with a previously developed "superstereo" matcher shows that the results are very comparable in accuracy with much greater coverage and at ten times the speed. Intercomparison of feature-based and area-based techniques shows that the feature-based techniques are comparable in accuracy at a factor of eight times the speed. An assessment of the accuracy of the area-based matcher for cloud-free scenes demonstrates the accuracy and completeness of the stereo-matcher. This trade-off has resulted in the loss of a reliable quality metric to predict accuracy and a slightly high blunder rate. Examples are shown of the application of the MISR stereo-matchers on several difficult scenes which demonstrate the efficacy of the matching approach

    Solubility of Indium-Tin Oxide in simulated lung and gastric fluids: Pathways for human intake

    Get PDF
    ArticleThis is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.From being a metal with very limited natural distribution, indium (In) has recently become disseminated throughout the human society. Little is know of how In compounds behave in the natural environment, but recent medical studies link exposure to In compounds to elevated risk of respiratory disorders. Animal tests suggest that exposure may lead to more widespread damage in the body, notably the liver, kidneys and spleen. In this paper, we investigate the solubility of the most widely used In compound, indium-tin oxide (ITO) in simulated lung and gastric fluids in order to better understand the potential pathways for metals to be introduced into the bloodstream. Our results show significant potential for release of In and tin (Sn) in the deep parts of the lungs (artificial lysosomal fluid) and digestive tract, while the solubility in the upper parts of the lungs (the respiratory tract or tracheobronchial tree) is very low. Our study confirms that ITO is likely to remain as solid particles in the upper parts of the lungs, but that particles are likely to slowly dissolve in the deep lungs. Considering the prolonged residence time of inhaled particles in the deep lung, this environment is likely to provide the major route for uptake of In and Sn from inhaled ITO nano- and microparticles. Although dissolution through digestion may also lead to some uptake, the much shorter residence time is likely to lead to much lower risk of uptake.This paper was in part supported by the Natural Environment Research Council (NERC, NE/L001896/1). The authors benefited from advice from and discussions with Dr Adam Feldman, sample preparation and X-ray diffraction by Dr Gavyn Rollinson, and ICP- MS analysis by Sharon Uren

    Geomorphology’s role in the study of weathering of cultural stone

    Get PDF
    Great monumental places—Petra, Giza, Angkor, Stonehenge, Tikal, Macchu Picchu, Rapa Nui, to name a few—are links to our cultural past. They evoke a sense of wonderment for their aesthetic fascination if not for their seeming permanence over both cultural and physical landscapes. However, as with natural landforms, human constructs are subject to weathering and erosion. Indeed, many of our cultural resources suffer from serious deterioration, some natural, some enhanced by human impact. Groups from the United Nations to local civic and tourism assemblies are deeply interested in maintaining and preserving such cultural resources, from simple rock art to great temples. Geomorphologists trained in interacting systems, process and response to thresholds, rates of change over time, and spatial variation of weathering processes and effects are able to offer insight into how deterioration occurs and what can be done to ameliorate the impact.Review of recent literature and case studies presented here demonstrate methodological and theoretical advances that have resulted from the study of cultural stone weathering. Because the stone was carved at a known date to a ‘‘baseline’’ or zero-datum level, some of the simplest methods (e.g., assessing surface weathering features or measuring surface recession in the field) provide useful data on weathering rates and processes. Such data are difficult or impossible to obtain in ‘‘natural’’ settings. Cultural stone weathering studies demonstrate the importance of biotic and saline weathering agents and the significance of weathering factors such as exposure (microclimate) and human impact. More sophisticated methods confirm these observations, but also reveal discrepancies between field and laboratory studies. This brings up two important caveats for conservators and geomorphologists. For the conservator, are laboratory and natural setting studies really analogous and useful for assessing stone damage? For the geomorphologist, does cultural stone data have any real relevance to the natural environment? These are questions for future research and debate. In any event, cultural stone weathering studies have been productive for both geomorphologists and conservators. Continued collaboration and communication between the geomorphic, historic preservation, archaeological, and engineering research communities are encouraged

    Haze optical depth in exoplanet atmospheres varies with rotation rate: Implications for observations

    Full text link
    Transmission spectroscopy supports the presence of uncharacterised, light-scattering and -absorbing aerosols in the atmospheres of many exoplanets. The complexity of factors influencing the formation, 3-D transport, radiative impact, and removal of aerosols makes it challenging to match theoretical models to the existing data. Our study simplifies these factors to focus on the interaction between planetary general circulation and haze distribution at the planetary limb. We use an intermediate complexity general circulation model, ExoPlaSim, to simulate idealised organic haze particles as radiatively active tracers in the atmospheres of tidally locked terrestrial planets for 32 rotation rates. We find three distinct 3-D spatial haze distributions, corresponding to three circulation regimes, each with a different haze profile at the limb. All regimes display significant terminator asymmetry. In our parameter space, super-Earth-sized planets with rotation periods greater than 13 days have the lowest haze optical depths at the terminator, supporting the choice of slower rotators as observing targets.Comment: 25 pages, 15 figure

    Subjective memory complaints, vascular risk factors and psychological distress in the middle-aged: a cross-sectional study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Subjective memory complaints (SMC) are common but their significance is still unclear. It has been suggested they are a precursor of mild cognitive impairment (MCI) or dementia and an early indicator of cognitive decline. Vascular risk factors have an important role in the development of dementia and possibly MCI. We therefore aimed to test the hypothesis that vascular risk factors were associated with SMC, independent of psychological distress, in a middle-aged community-dwelling population.</p> <p>Methods</p> <p>A cross-sectional analysis of baseline data from the 45 and Up Study was performed. This is a cohort study of people living in New South Wales (Australia), and we explored the sample of 45, 532 participants aged between 45 and 64 years. SMC were defined as 'fair' or 'poor' on a self-reported five-point Likert scale of memory function. Vascular risk factors of obesity, diabetes, hypertension, hypercholesterolemia and smoking were identified by self-report. Psychological distress was measured by the Kessler Psychological Distress Scale. We tested the model generated from a randomly selected exploratory sample (n = 22, 766) with a confirmatory sample of equal size.</p> <p>Results</p> <p>5, 479/45, 532 (12%) of respondents reported SMC. Using multivariate logistic regression, only two vascular risk factors: smoking (OR 1.18; 95% CI = 1.03 - 1.35) and hypercholesterolaemia (OR 1.19; 95% CI = 1.04 - 1.36) showed a small independent association with SMC. In contrast psychological distress was strongly associated with SMC. Those with the highest levels of psychological distress were 7.00 (95% CI = 5.41 - 9.07) times more likely to have SMC than the non-distressed. The confirmatory sample also demonstrated the strong association of SMC with psychological distress rather than vascular risk factors.</p> <p>Conclusions</p> <p>In a large sample of middle-aged people without any history of major affective illness or stroke, psychological distress was strongly, and vascular risk factors only weakly, associated with SMC, although we cannot discount psychological distress acting as a mediator in any association between vascular risk factors and SMC. Given this, clinicians should be vigilant regarding the presence of an affective illness when assessing middle-aged patients presenting with memory problems.</p

    A Geostatistical Data Fusion Technique for Merging Remote Sensing and Ground-Based Observations of Aerosol Optical Thickness

    Get PDF
    Particles in the atmosphere reflect incoming sunlight, tending to cool the Earth below. Some particles, such as soot, also absorb sunlight, which tens to warm the ambient atmosphere. Aerosol optical depth (AOD) is a measure of the amount of particulate matter in the atmosphere, and is a key input to computer models that simulate and predict Earth's changing climate. The global AOD products from the Multi-angle Imaging SpectroRadiometer (MISR) and the MODerate resolution Imaging Spectroradiometer (MODIS), both of which fly on the NASA Earth Observing System's Terra satellite, provide complementary views of the particles in the atmosphere. Whereas MODIS offers global coverage about four times as frequent as MISR, the multi-angle data makes it possible to separate the surface and atmospheric contributions to the observed top-of-atmosphere radiances, and also to more effectively discriminate particle type. Surface-based AERONET sun photometers retrieve AOD with smaller uncertainties than the satellite instruments, but only at a few fixed locations. So there are clear reasons to combine these data sets in a way that takes advantage of their respective strengths. This paper represents an effort at combining MISR, MODIS and AERONET AOD products over the continental US, using a common spatial statistical technique called kriging. The technique uses the correlation between the satellite data and the "ground-truth" sun photometer observations to assign uncertainty to the satellite data on a region-by-region basis. The larger fraction of the sun photometer variance that is duplicated by the satellite data, the higher the confidence assigned to the satellite data in that region. In the Western and Central US, MISR AOD correlation with AERONET are significantly higher than those with MODIS, likely due to bright surfaces in these regions, which pose greater challenges for the single-view MODIS retrievals. In the east, MODIS correlations are higher, due to more frequent sampling of the varying AOD. These results demonstrate how the MISR and MODIS aerosol products are complementary. The underlying technique also provides one method for combining these products in such a way that takes advantage of the strengths of each, in the places and times when they are maximal, and in addition, yields an estimate of the associated uncertainties in space and time

    Mechanical strain-mediated reduction in RANKL expression is associated with RUNX2 and BRD2

    Get PDF
    Mechanical loading-related strains trigger bone formation by osteoblasts while suppressing resorption by osteoclasts, uncoupling the processes of formation and resorption. Osteocytes may orchestrate this process in part by secreting sclerostin (SOST), which inhibits osteoblasts, and expressing receptor activator of nuclear factor-κB ligand (RANKL/TNFSF11) which recruits osteoclasts. Both SOST and RANKL are targets of the master osteoblastic transcription factor RUNX2. Subjecting human osteoblastic Saos-2 cells to strain by four point bending down-regulates their expression of SOST and RANKL without altering RUNX2 expression. RUNX2 knockdown increases basal SOST expression, but does not alter SOST down-regulation following strain. Conversely, RUNX2 knockdown does not alter basal RANKL expression, but prevents its down-regulation by strain. Chromatin immunoprecipitation revealed RUNX2 occupies a region of the RANKL promoter containing a consensus RUNX2 binding site and its occupancy of this site decreases following strain. The expression of epigenetic acetyl and methyl writers and readers was quantified by RT-qPCR to investigate potential epigenetic bases for this change. Strain and RUNX2 knockdown both down-regulate expression of the bromodomain acetyl reader BRD2. BRD2 and RUNX2 co-immunoprecipitate, suggesting interaction within regulatory complexes, and BRD2 was confirmed to interact with the RUNX2 promoter. BRD2 also occupies the RANKL promoter and its occupancy was reduced following exposure to strain. Thus, RUNX2 may contribute to bone remodeling by suppressing basal SOST expression, while facilitating the acute strain-induced down-regulation of RANKL through a mechanosensitive epigenetic loop involving BRD2

    Perancangan Patung Kinetik Dengan Material Industrial Sebagai Elemen Penunjang Interior

    Get PDF
    Salah satu jenis karya seni yang berbentuk tiga dimensi adalah seni patung. Bentuk yang akan dikembangkan dalam penciptaan ini adalah berbagai bentuk patung yang dihasilkan dari material industrian yaitu mesin mobil. Melalui metode pendekatan kualitatif dengan metode Research (DBR), penulis berusaha mewujudkan karya seni tiga dimensi yang estetis dengan material industrial. Material industrial yang berupa mesin-mesin mobil ini dirakit menjadi patung kinetik dan dipadukan dengan elemen interior berupa furniture menggunakan teknik las dan rakit. Mesin-mesin tersebut difungsikan mekanisnya menggunakan dinamo atau motor listrik sehingga menghasilkan seni patung kinetik yang mengubah arus listrik menjadi tenaga gerak. Proses mengkomposisikan material industrial, harus memperhatikan komponen mekanik yang akan ditampilkan dan digerakkan secara sederhana dengan sumber daya elektrik maupun manual dalam bentuk baru. Material industry yang mempunyai mekanik sederhana dapat ditampilkan menjadi bagian utama bentuk patung. Perakitan dan penyambungan sederhana dalam mengkomposisikan material industrial harus memperhatikan komponen mekanik yang akan ditampilkan dan digerakkan secara sederhana dengan sumber daya elektrik maupun manual dalam bentuk baru. Teknik yang dapat digunakan dalam pembentukan karya tiga dimensi ini adalah perakitan dan penyambungan sederhana sehingga tidak merusak bentuk asli material industria
    corecore