17 research outputs found

    Real space demonstration of induced crystalline 3D nanostructuration of organic layers

    Get PDF
    La filiació de Marcos Paradinas Aranjuelo en el moment de la publicació és l'Institut Català de Nanociència i NanotecnologiaThe controlled 3D nanostructuration of molecular layers of the semiconducting molecules CH (pentacene) and N,N'-dioctyl-3,4,9,10-perylene tetracarboxylic diimide (PTCDI-C8) is addressed. A tip-assisted method using atomic force microscopy (AFM) is developed for removing part of the organic material and relocating it in up to six layer thick nanostructures. Moreover, unconventional molecular scale imaging combining diverse friction force microscopy modes reveals the stacking sequence of the piled layers. In particular, we unambiguously achieve epitaxial growth, an issue of fundamental importance in thin film strategies for the nanostructuration of more efficient organic nanodevices

    Influence of the relative molecular orientation on interfacial charge-transfer Excitons at donor/acceptor Nanoscale heterojunctions

    Get PDF
    We address the impact of the relative orientation between donor (D) and acceptor (A) molecules at the D/A heterojunction on the exciton dissociation. For this purpose, two-dimensional heterojunctions of diindenoperylene (DIP) and N,N'-dioctyl-3,4,9,10-perylene tetracarboxylicdiimide (PTCDI-C) deposited onto SiO/Si are grown, which exemplify two model interfaces with the π-staking direction either perpendicular or parallel to the interface. Aspects related to the morphology of the heterojunctions and charge photogeneration are studied by scanning probe force methods and photoluminescence (PL) spectroscopy. Results from PL spectroscopy indicate that the exciton dissociation is influenced by the different relative molecular orientations of A and D. For the configuration with stronger orbital overlap between A and D at the interface, the exciton dissociation is dominated by recombination from an interfacial charge-transfer state. © 2014 American Chemical Society

    Electronic Structure of Titanylphthalocyanine Layers on Ag(111)

    Get PDF
    We have investigated the electronic structures of axially oxo functionalized titanylphthalocyanine (TiOPc) on Ag(111) by X-ray and ultraviolet photoelectron spectroscopies, two-photon photoemission, X-ray absorption spectroscopy, and X-ray magnetic circular dichroism. Furthermore, we use complementary data of TiOPc on graphite and planar copper phthalocyanine (CuPc) on Ag(111) for a comparative analysis. Both molecules adsorb on Ag(111) in a parallel orientation to the surface, for TiOPc with an oxygen-up configuration. The interaction of nitrogen and carbon atoms with the substrate is similar for both molecules, while the bonding of the titanium atom to Ag(111) in the monolayer is found to be slightly more pronounced than in the CuPc case. Ultraviolet photoemission spectroscopy reveals an occupation of the lowest unoccupied molecular orbital (LUMO) level in monolayer thick TiOPc on Ag(111) related to the interaction of the molecules and the silver substrate. This molecule-metal interaction also causes an upward shift of the Ag(111) Shockley state that is transformed into an unoccupied interface state with energies of 0.23 and 0.33 eV for the TiOPc monolayer and bilayer, respectively, at the Brillouin zone center

    Bottom-up synthesis of multifunctional nanoporous graphene

    Get PDF
    Nanosize pores can turn semimetallic graphene into a semiconductor and, from being impermeable, into the most efficient molecular-sieve membrane. However, scaling the pores down to the nanometer, while fulfilling the tight structural constraints imposed by applications, represents an enormous challenge for present top-down strategies. Here we report a bottom-up method to synthesize nanoporous graphene comprising an ordered array of pores separated by ribbons, which can be tuned down to the 1-nanometer range. The size, density, morphology, and chemical composition of the pores are defined with atomic precision by the design of the molecular precursors. Our electronic characterization further reveals a highly anisotropic electronic structure, where orthogonal one-dimensional electronic bands with an energy gap of ∼1 electron volt coexist with confined pore states, making the nanoporous graphene a highly versatile semiconductor for simultaneous sieving and electrical sensing of molecular species

    Microfluidic pneumatic cages : A novel approach for in-chip crystal trapping, manipulation and controlled chemical treatment

    Get PDF
    The precise localization and controlled chemical treatment of structures on a surface are significant challenges for common laboratory technologies. Herein, we introduce a microfluidic-based technology, employing a double-layer microfluidic device, which can trap and localize in situ and ex situ synthesized structures on microfluidic channel surfaces. Crucially, we show how such a device can be used to conduct controlled chemical reactions onto on-chip trapped structures and we demonstrate how the synthetic pathway of a crystalline molecular material and its positioning inside a microfluidic channel can be precisely modified with this technology. This approach provides new opportunities for the controlled assembly of structures on surface and for their subsequent treatment

    Nanoscale properties of self-assembled and laterally nanostructured surface systems

    Get PDF
    Las microscopías de campo cercano en general (SPM) y la microscopia de fuerzas (SFM) en particular, se han convertido en una poderosa herramienta en nanotecnología, ya que permiten tanto caracterizar como manipular las superficies de los materiales en la nanoescala. En el presente trabajo de investigación se han estudiado las propiedades morfológicas, mecánicas, electrostáticas y de conducción de sistemas autoensamblados y nanoestructurados que incluyen películas delgadas orgánicas y superficies inorgánicas mediante estas técnicas de SPM, SFM y microscopía de efecto túnel (STM), en condiciones de ambiente controlado. Nos centramos principalmente en el uso de técnicas de SFM en modos de operación de contacto, dinámico, microscopía de fuerzas de fricción (FFM), conductividad con SFM (CSFM) y microscopía de sonda Kelvin (KPFM). El manuscrito de la tesis está organizado del siguiente modo: en el capítulo 1 se exponen las motivaciones del trabajo y en el capítulo 2 se hace una pequeña introducción al concepto de autoensamblado y a los sistemas nanoestructurados en los sistemas bajo estudio, películas delgadas orgánicas y superficies inorgánicas. En el capítulo 3 se introducen las distintas técnicas y procedimientos experimentales. Se explican las características generales del SPM, haciendo particular hincapié en los modos de operación de SFM empleados. En el mismo capítulo se explican los procedimientos empleados para el crecimiento de películas delgadas orgánicas, incluyendo los métodos químicos de solución molecular, la litografía “microcontact printing” ( μCP) y la deposición de moléculas orgánicas por haces moleculares (OMBD). En el capítulo 4 investigamos el impacto de la estructura supramolecular de las capas orgánicas autoensambladas (SAMs) en las propiedades morfológicas, electrostáticas y de conducción de superficies funcionalizadas. Con este propósito y para poder realizar un análisis comparativo basado en el uso de referencias in-situ, estudiamos la SAM formada por dos fases supramoleculares de la misma molécula CH3(C6H4)2(CH2)4SH) (BP4) coexistiendo en la superficie Au(111). Mostramos como la organización supramolecular (estructura interna de la película orgánica) es un factor decisivo que determina las propiedades de la superficie y demostramos como la técnica FFM puede emplearse, por ejemplo, para diferenciar dominios moleculares de distinta orientación cristalina. Además, gracias al uso combinado del STM y CSFM en medidas de transporte electrónico, interpretamos la diferencia en la altura aparente medida por una u otra técnica en películas orgánicas inhomogéneas. En el capítulo 5 estudiamos las propiedades de la superficie SrTiO3 (001) nanoestructurada. La nanoestructuración en este caso viene dada por la coexistencia de las dos posibles terminaciones, TiO2 y SrO, lateralmente diferenciadas, que empleamos como plantilla para la adsorción selectiva de SAMs. Demostramos que la molécula de ácido esteárico (con funcionalidad COOH) se adsorbe selectivamente en la superficie TiO2 y estudiamos el impacto de su adsorción sobre las propiedades mecánicas y electrostáticas de la superficie. Así, describimos las principales características de la superficie SrTiO3 (001) nanoestructurada, la adsorción de la SAM en la superficie TiO2 y discutimos el impacto de esta adsorción en las propiedades de la superficie. Finalmente, en el capítulo 6 presentamos dos efectos inducidos por la punta del SFM susceptibles de usarse para la manipulación local y controlada de películas orgánicas. Mostramos el crecimiento de multicapas de pentaceno inducido mecánicamente y un efecto de pelado de capas moleculares al aplicar voltajes entre una punta conductora y materiales moleculares conductores, un efecto a tener en cuenta en el diseño de futuros dispositivos en electrónica molecular.The present work lies within the scope of the morphological, mechanical, electrostatic and conductive characterization of self-assembled and nanostructured systems, including organic thin films and inorganic surfaces. Scanning probe microscopy (SPM) techniques, in general, and scanning force microscopy (SFM), in particular has become one of the most powerful tools in nanotechnology because they offer the combined capability of surface properties characterization and manipulation of material surfaces in the nanoscale. In this work we make use of SPM techniques, both SFM and scanning tunneling microscopy (STM), under controlled ambient conditions for the characterization and manipulation of different self-assembled and nanostructured systems. We mainly focus on the use of SFM in contact, dynamic, friction force microscopy (FFM), conductive scanning force microscopy (CSFM) and Kelvin probe force microcopy (KPFM) operating modes for such a purpose. The thesis is organized in the following way: the motivations for this work are presented in chapter 1, and a short introduction to the self-assembled concept and nanostructured systems in organic thin films and inorganic surfaces is done in chapter 2. Chapter 3 introduces the fundamental description of the experimental techniques and procedures used. The main experimental characterization SPM techniques are introduced and a particular attention is devoted to explain the different SFM techniques used. In the same chapter, the growth techniques of organic thin film are explained, including, the solution based methods, the soft lithography μ-contact printing (μCP) and the organic molecular beam deposition (OMBD). In chapter 4 we investigate the influence of the supramolecular structure of self-assembled monolayers (SAMs) into the morphological, mechanical, electrostatic and conductive properties of a functionalized surface. For this purpose we study the CH3(C6H4)2(CH2)4SH) (BP4) molecule SAM on the Au(111) surface presenting two different coexisting supramolecular arrangements. We show how the supramolecular order of the SAM is a decisive factor influencing the nanoscale properties of the surface and also demonstrate how FFM can be employed to differentiate SAM domains with different orientation. In addition, based on electron current measurements, the combined use of STM and CSFM allows us interpreting the differences in apparent height as measured by one or the other technique in non-homogeneous organic layers. In chapter 5 we study the properties of the nanopatterned SrTiO3 (001) surface and explore its use as template for the selective adsorption of SAMs. We find that stearic acid molecules (containing a COOH headgroup) selectively chemisorb on the TiO2 surface. This fact allows us to investigate SAMs adsorption influence on the mechanical and electrostatic properties of this oxide surface. We address the main characteristics of the nanopatterned SrTiO3 (001) surface and we describe the selective adsorption of SAMs on the TiO2 surface, discussing how this influences the local mechanical and electrostatic properties of the surface. Finally, in chapter 6 we present two different tip-induced effects which can be use to manipulate organic thin film materials. We address the mechanical induced growth of pentacene molecular layers, a phenomena that can be used as a local nanolithography approach for nanostructuration. And we also provide a way for peeling a layered organic molecular material when a voltage is applied between the conducting system and the conducting probe of the SFM, which is important to take into account for the design of organic electronic devices

    In-situ scrutiny of the relationship between polymorphic phases and properties of self-assembled monolayers of a biphenyl based thiol

    No full text
    Two polymorphic phases of ω-(4'-methylbiphenyl-4-yl) butane-1-thiol (BP4) molecules formed on Au(111) were investigated by multidimensional atomic force microscopy, combining conductivity measurements, electrostatic characterization, friction force mapping, and normal force spectroscopy. Based on the same molecular structure but differing in molecular order, packing density, and molecular tilt, the two phases serve as a test bench to establish the structure-property relationships in self-assembled monolayers (SAMs). From a detailed analysis of the charge transport and electrostatics, the contributions of geometrical and electronic effects to the tunneling are discussed

    Nanoscale properties of self-assembled and laterally nanostructured surface systems

    Get PDF
    Las microscopías de campo cercano en general (SPM) y la microscopia de fuerzas (SFM) en particular, se han convertido en una poderosa herramienta en nanotecnología, ya que permiten tanto caracterizar como manipular las superficies de los materiales en la nanoescala. En el presente trabajo de investigación se han estudiado las propiedades morfológicas, mecánicas, electrostáticas y de conducción de sistemas autoensamblados y nanoestructurados que incluyen películas delgadas orgánicas y superficies inorgánicas mediante estas técnicas de SPM, SFM y microscopía de efecto túnel (STM), en condiciones de ambiente controlado. Nos centramos principalmente en el uso de técnicas de SFM en modos de operación de contacto, dinámico, microscopía de fuerzas de fricción (FFM), conductividad con SFM (CSFM) y microscopía de sonda Kelvin (KPFM). El manuscrito de la tesis está organizado del siguiente modo: en el capítulo 1 se exponen las motivaciones del trabajo y en el capítulo 2 se hace una pequeña introducción al concepto de autoensamblado y a los sistemas nanoestructurados en los sistemas bajo estudio, películas delgadas orgánicas y superficies inorgánicas. En el capítulo 3 se introducen las distintas técnicas y procedimientos experimentales. Se explican las características generales del SPM, haciendo particular hincapié en los modos de operación de SFM empleados. En el mismo capítulo se explican los procedimientos empleados para el crecimiento de películas delgadas orgánicas, incluyendo los métodos químicos de solución molecular, la litografía "microcontact printing" ( μCP) y la deposición de moléculas orgánicas por haces moleculares (OMBD). En el capítulo 4 investigamos el impacto de la estructura supramolecular de las capas orgánicas autoensambladas (SAMs) en las propiedades morfológicas, electrostáticas y de conducción de superficies funcionalizadas. Con este propósito y para poder realizar un análisis comparativo basado en el uso de referencias in-situ, estudiamos la SAM formada por dos fases supramoleculares de la misma molécula CH3(C6H4)2(CH2)4SH) (BP4) coexistiendo en la superficie Au(111). Mostramos como la organización supramolecular (estructura interna de la película orgánica) es un factor decisivo que determina las propiedades de la superficie y demostramos como la técnica FFM puede emplearse, por ejemplo, para diferenciar dominios moleculares de distinta orientación cristalina. Además, gracias al uso combinado del STM y CSFM en medidas de transporte electrónico, interpretamos la diferencia en la altura aparente medida por una u otra técnica en películas orgánicas inhomogéneas. En el capítulo 5 estudiamos las propiedades de la superficie SrTiO3 (001) nanoestructurada. La nanoestructuración en este caso viene dada por la coexistencia de las dos posibles terminaciones, TiO2 y SrO, lateralmente diferenciadas, que empleamos como plantilla para la adsorción selectiva de SAMs. Demostramos que la molécula de ácido esteárico (con funcionalidad COOH) se adsorbe selectivamente en la superficie TiO2 y estudiamos el impacto de su adsorción sobre las propiedades mecánicas y electrostáticas de la superficie. Así, describimos las principales características de la superficie SrTiO3 (001) nanoestructurada, la adsorción de la SAM en la superficie TiO2 y discutimos el impacto de esta adsorción en las propiedades de la superficie. Finalmente, en el capítulo 6 presentamos dos efectos inducidos por la punta del SFM susceptibles de usarse para la manipulación local y controlada de películas orgánicas. Mostramos el crecimiento de multicapas de pentaceno inducido mecánicamente y un efecto de pelado de capas moleculares al aplicar voltajes entre una punta conductora y materiales moleculares conductores, un efecto a tener en cuenta en el diseño de futuros dispositivos en electrónica molecular.The present work lies within the scope of the morphological, mechanical, electrostatic and conductive characterization of self-assembled and nanostructured systems, including organic thin films and inorganic surfaces. Scanning probe microscopy (SPM) techniques, in general, and scanning force microscopy (SFM), in particular has become one of the most powerful tools in nanotechnology because they offer the combined capability of surface properties characterization and manipulation of material surfaces in the nanoscale. In this work we make use of SPM techniques, both SFM and scanning tunneling microscopy (STM), under controlled ambient conditions for the characterization and manipulation of different self-assembled and nanostructured systems. We mainly focus on the use of SFM in contact, dynamic, friction force microscopy (FFM), conductive scanning force microscopy (CSFM) and Kelvin probe force microcopy (KPFM) operating modes for such a purpose. The thesis is organized in the following way: the motivations for this work are presented in chapter 1, and a short introduction to the self-assembled concept and nanostructured systems in organic thin films and inorganic surfaces is done in chapter 2. Chapter 3 introduces the fundamental description of the experimental techniques and procedures used. The main experimental characterization SPM techniques are introduced and a particular attention is devoted to explain the different SFM techniques used. In the same chapter, the growth techniques of organic thin film are explained, including, the solution based methods, the soft lithography μ-contact printing (μCP) and the organic molecular beam deposition (OMBD). In chapter 4 we investigate the influence of the supramolecular structure of self-assembled monolayers (SAMs) into the morphological, mechanical, electrostatic and conductive properties of a functionalized surface. For this purpose we study the CH3(C6H4)2(CH2)4SH) (BP4) molecule SAM on the Au(111) surface presenting two different coexisting supramolecular arrangements. We show how the supramolecular order of the SAM is a decisive factor influencing the nanoscale properties of the surface and also demonstrate how FFM can be employed to differentiate SAM domains with different orientation. In addition, based on electron current measurements, the combined use of STM and CSFM allows us interpreting the differences in apparent height as measured by one or the other technique in non-homogeneous organic layers. In chapter 5 we study the properties of the nanopatterned SrTiO3 (001) surface and explore its use as template for the selective adsorption of SAMs. We find that stearic acid molecules (containing a COOH headgroup) selectively chemisorb on the TiO2 surface. This fact allows us to investigate SAMs adsorption influence on the mechanical and electrostatic properties of this oxide surface. We address the main characteristics of the nanopatterned SrTiO3 (001) surface and we describe the selective adsorption of SAMs on the TiO2 surface, discussing how this influences the local mechanical and electrostatic properties of the surface. Finally, in chapter 6 we present two different tip-induced effects which can be use to manipulate organic thin film materials. We address the mechanical induced growth of pentacene molecular layers, a phenomena that can be used as a local nanolithography approach for nanostructuration. And we also provide a way for peeling a layered organic molecular material when a voltage is applied between the conducting system and the conducting probe of the SFM, which is important to take into account for the design of organic electronic devices

    Real space demonstration of induced crystalline 3D nanostructuration of organic layers

    No full text
    La filiació de Marcos Paradinas Aranjuelo en el moment de la publicació és l'Institut Català de Nanociència i NanotecnologiaThe controlled 3D nanostructuration of molecular layers of the semiconducting molecules CH (pentacene) and N,N'-dioctyl-3,4,9,10-perylene tetracarboxylic diimide (PTCDI-C8) is addressed. A tip-assisted method using atomic force microscopy (AFM) is developed for removing part of the organic material and relocating it in up to six layer thick nanostructures. Moreover, unconventional molecular scale imaging combining diverse friction force microscopy modes reveals the stacking sequence of the piled layers. In particular, we unambiguously achieve epitaxial growth, an issue of fundamental importance in thin film strategies for the nanostructuration of more efficient organic nanodevices

    On-surface synthesis of superlattice arrays of ultra-long graphene nanoribbons

    No full text
    We report the on-surface synthesis of graphene nanoribbon superlattice arrays directed by the herringbone reconstruction of the Au(111) surface. The uniaxial anisotropy of the zigzag pattern of the reconstruction defines a one dimensional grid for directing the Ullmann polymerization and inducing periodic arrays of parallel ultra-long nanoribbons (>100 nm), where the periodicity is varied with coverage at discrete values following a hierarchical templating behavior
    corecore