9 research outputs found

    Evolution of mitochondrial relationships and biogeography of Palearctic green toads (Bufo viridis subgroup) with insights in their genomic plasticity.

    Get PDF
    Taxa involving three bisexually reproducing ploidy levels make green toads a unique amphibian system. We put a cytogenetic dataset from Central Asia in a molecular framework and apply phylogenetic and demographic methods to data from the entire Palearctic range. We study the mitochondrial relationships of diploids to infer their phylogeography and the maternal ancestry of polyploids. Control regions (and tRNAs between ND1 and ND2 in representatives) characterize a deeply branched assemblage of twelve haplotype groups, diverged since the Lower Miocene. Polyploidy has evolved several times: Central Asian tetraploids (B. oblongus, B. pewzowi) have at least two maternal origins. Intriguingly, the mitochondrial ancestor of morphologically distinctive, sexually reproducing triploid taxa (B. pseudoraddei) from Karakoram and Hindukush represents a different lineage. We report another potential case of bisexual triploid toads (B. zugmayeri). Identical d-loops in diploids and tetraploids from Iran and Turkmenistan, which differ in morphology, karyotypes and calls, suggest multiple origins and retained polymorphism and/or hybridization. A similar system involves diploids, triploids and tetraploids from Kyrgyzstan and Kazakhstan where green toads exemplify vertebrate genomic plasticity. A new form from Sicily and its African sister species (B. boulengeri) allow internal calibration and divergence time estimates for major clades. The subgroup may have originated in Eurasia rather than Africa since the earliest diverged lineages (B. latastii, B. surdus) and earliest fossils occur in Asia. We delineate ranges, contact and hybrid zones. Phylogeography, including one of the first non-avian datasets from Central Asian high mountains, reflects Quaternary climate and glaciation

    Continuum-mechanical, Anisotropic Flow model for polar ice masses, based on an anisotropic Flow Enhancement factor

    Get PDF
    A complete theoretical presentation of the Continuum-mechanical, Anisotropic Flow model, based on an anisotropic Flow Enhancement factor (CAFFE model) is given. The CAFFE model is an application of the theory of mixtures with continuous diversity for the case of large polar ice masses in which induced anisotropy occurs. The anisotropic response of the polycrystalline ice is described by a generalization of Glen's flow law, based on a scalar anisotropic enhancement factor. The enhancement factor depends on the orientation mass density, which is closely related to the orientation distribution function and describes the distribution of grain orientations (fabric). Fabric evolution is governed by the orientation mass balance, which depends on four distinct effects, interpreted as local rigid body rotation, grain rotation, rotation recrystallization (polygonization) and grain boundary migration (migration recrystallization), respectively. It is proven that the flow law of the CAFFE model is truly anisotropic despite the collinearity between the stress deviator and stretching tensors.Comment: 22 pages, 5 figure

    The phylogeny of Mediterranean tortoises and their close relatives based on complete mitochondrial genome sequences from museum specimens

    No full text
    As part of an ongoing project to generate a mitochondrial database for terrestrial tortoises based on museum specimens, the complete mitochondrial genome sequences of 10 species and a ∼14 kb sequence from an eleventh species are reported. The sampling of the present study emphasizes Mediterranean tortoises (genus Testudo and their close relatives). Our new sequences are aligned, along with those of two testudinoid turtles from GenBank, Chrysemys picta and Mauremys reevesii, yielding an alignment of 14,858 positions, of which 3238 are parsimony informative. We develop a phylogenetic taxonomy for Testudo and related species based on well-supported, diagnosable clades. Several well-supported nodes are recovered, including the monophyly of a restricted Testudo, T. kleinmanni + T. marginata (the Chersus clade), and the placement of the enigmatic African pancake tortoise (Malacochersus tornieri) within the predominantly Palearctic greater Testudo group (Testudona tax. nov.). Despite the large amount of sequence reported, there is low statistical support for some nodes within Testudona and so we do not propose names for those groups. A preliminary and conservative estimation of divergence times implies a late Miocene diversification for the testudonan clade (6-10 million years ago), matching their first appearance in the fossil record. The multi-continental distribution of testudonan turtles can be explained by the establishment of permanent connections between Europe, Africa, and Asia at this time. The arrival of testudonan turtles to Africa occurred after one or more initial tortoise invasions gave rise to the diverse (>25 species) 'Geochelone complex.' Two unusual genomic features are reported for the mtDNA of one tortoise, M. tornieri: (1) nad4 has a shift of reading frame that we suggest is resolved by translational frameshifting of the mRNA on the ribosome during protein synthesis and (2) there are two copies of the control region and trnF, with the latter having experienced multiple-nucleotide substitutions in a pattern suggesting that each is being maintained by selection. © 2005 Elsevier Inc. All rights reserved

    Deep genealogical lineages in the widely distributed African helmeted terrapin: Evidence from mitochondrial and nuclear DNA (Testudines: Pelomedusidae: Pelomedusa subrufa)

    No full text
    We investigated the phylogeographic differentiation of the widely distributed African helmeted terrapin Pelomedusa subrufa based on 1503 base pairs of mitochondrial DNA (partial cyt b and ND4 genes with adjacent tRNAs) and 1937 bp of nuclear DNA (partial Rag1, Rag2, R35 genes). Congruent among different analyses, nine strongly divergent mitochondrial clades were found, representing three major geographical groupings: (1) A northern group which includes clades I from Cameroon, II from Ghana and Ivory Coast, III from Benin, Burkina Faso and Niger, IV from the Central African Republic, and V from Kenya, (2) a northeastern group consisting of clades VI from Somalia, and VII from Saudi Arabia and Yemen, and (3) a southern group comprising clade VIII from Botswana, the Democratic Republic of Congo, Madagascar and Malawi, and clade IX from South Africa. Malagasy and continental African populations were not clearly differentiated, indicating very recent arrival or introduction of Pelomedusa in Madagascar. The southern group was in some phylogenetic analyses sister to Pelusios, rendering Pelomedusa paraphyletic with respect to that genus. However, using partitioned Bayesian analyses and sequence data of the three nuclear genes, Pelomedusa was monophyletic, suggesting that its mitochondrial paraphyly is due to either ancient introgressive hybridization or phylogenetic noise. Otherwise, nuclear sequence data recovered a lower level of divergence, but corroborated the general differentiation pattern of Pelomedusa as revealed by mtDNA. This, and the depth of the divergences between clades, indicates ancient differentiation. The divergences observed fall within, and in part exceed considerably, the differentiation typically occurring among chelonian species. To test whether Pelomedusa is best considered a single species composed of deep genealogical lineages, or a complex of up to nine distinct species, we suggest a future taxonomic revision that should (1) extend the geographical sampling of molecular data, specifically focusing on contact zones and the possible sympatric occurrence of lineages without admixture, and (2) evaluate the morphology of the various genealogical lineages using the type specimens or topotypical material of the numerous junior synonyms of P. subrufa. © 2010 Elsevier Inc.Articl
    corecore