Evolution of mitochondrial relationships and biogeography of Palearctic green toads (Bufo viridis subgroup) with insights in their genomic plasticity

Matthias Stöck ${ }^{\text {a,* }}$, Craig Moritz ${ }^{\text {a }}$, Michael Hickerson ${ }^{\text {a }}$, Daniel Frynta ${ }^{\text {b }}$, Tatjana Dujsebayeva ${ }^{\text {c }}$, Valery Eremchenko ${ }^{\text {d }}$, J. Robert Macey ${ }^{\text {a }}$, Theodore J. Papenfuss ${ }^{\text {a }}$, David B. Wake ${ }^{\text {a }}$
${ }^{\text {a }}$ University of California, Berkeley, Department of Integrative Biology, Museum of Vertebrate Zoology (MVZ), 3101 Valley of Life Sciences Building \#3160, Berkeley, CA 94720-3160, USA
${ }^{\text {b }}$ Charles University, Department of Zoology, Viničná 7, 12844 Praha, Czech Republic
${ }^{\text {c }}$ Institute of Zoology, Laboratory of Ornithology and Herpetology, Al-Farabi Prospect 93, Almaty 480060, Kazakhstan
${ }^{\text {d Kyrgyz-Russian Slavic University, Bishkek 720000, Kievskaya Street 44, Kyrgyzstan }}$

Received 2 February 2006; revised 19 May 2006; accepted 22 May 2006
Available online 2 June 2006

Abstract

Taxa involving three bisexually reproducing ploidy levels make green toads a unique amphibian system. We put a cytogenetic dataset from Central Asia in a molecular framework and apply phylogenetic and demographic methods to data from the entire Palearctic range. We study the mitochondrial relationships of diploids to infer their phylogeography and the maternal ancestry of polyploids. Control regions (and $t R N A$ s between ND1 and ND2 in representatives) characterize a deeply branched assemblage of twelve haplotype groups, diverged since the Lower Miocene. Polyploidy has evolved several times: Central Asian tetraploids (B. oblongus, B. pewzowi) have at least two maternal origins. Intriguingly, the mitochondrial ancestor of morphologically distinctive, sexually reproducing triploid taxa (B. pseudoraddei) from Karakoram and Hindukush represents a different lineage. We report another potential case of bisexual triploid toads (B. zugmayeri). Identical d-loops in diploids and tetraploids from Iran and Turkmenistan, which differ in morphology, karyotypes and calls, suggest multiple origins and retained polymorphism and/or hybridization. A similar system involves diploids, triploids and tetraploids from Kyrgyzstan and Kazakhstan where green toads exemplify vertebrate genomic plasticity. A new form from Sicily and its African sister species (B. boulengeri) allow internal calibration and divergence time estimates for major clades. The subgroup may have originated in Eurasia rather than Africa since the earliest diverged lineages (B. latastii, B. surdus) and earliest fossils occur in Asia. We delineate ranges, contact and hybrid zones. Phylogeography, including one of the first non-avian datasets from Central Asian high mountains, reflects Quaternary climate and glaciation. © 2006 Elsevier Inc. All rights reserved.

Keywords: Polyploidy; d-loop; Phylogeny; Population genetics; Palearctic; Phylogeography

1. Introduction

Gene and genome duplications are a major source of evolutionary innovation and diversity. In vertebrates, two

[^0]aspects can be distinguished: (i) whole genome doubling during early evolution (Ohno, 1970) with accumulating evidence (e.g. Meyer and Schartl, 1999; Taylor and Raes, 2005; McLysaght et al., 2002; Furlong and Holland, 2002; Jaillon et al., 2004), including number and history of duplications (Dehal and Boore, 2005). (ii) More recently evolved polyploids, which provide an opportunity to understand the evolutionary consequences of large genomic changes. In animals, recent polyploids (Gregory and

Fig. 1. Geographic range of the Bufo viridis subgroup with sampling localities and sites of oldest known fossils of the B. viridis subgroup. See legend and Appendix A for locality IDs. Approximate range limits after Balletto et al. (1985), Bons and Geniez (1996), Gasc et al. (1997), Borkin (1999), Kuzmin (1999), Schleich et al. (1996), and Stöck et al. (2001a,b).

Mable, 2005) are known among turbellarians, annelids, mollusks, insects and crustaceans. Among vertebrates, cytogenetic studies revealed numerous clades of polyploids in teleosts (Schultz, 1980; Le Comber and Smith, 2004), amphibians and reptiles (Bogart, 1980), but not in mammals (Contreras et al., 1990; Svartman et al., 2005). Natural polyploids are especially frequent in amphibians in which they evolved in Urodela and Anura (Bogart, 1980; Schmid, 1980; Kawamura, 1984; Vences and Wake, in press).

A challenge for the formation of polyploid animals is the duplication of sex determining loci (for a recent discussion: Mable, 2004; Coyne and Orr, 2004), often resulting in deviations from sexual and/or meiotic reproduction. In vertebrates, reproductive modes without (so far identified forms of) recombination are parthenogenesis (Suomalainen et al., 1987; Dawley and Bogart, 1989; Simon et al., 2003) and gynogenesis (Beukeboom and Vrijenhoek, 1998). True parthenogenesis among vertebrates is apparently restricted to reptiles with all-female clones producing identical daughters that lack any paternal contribution. In gynogenesis, found in fishes and amphibians, embryogenesis is triggered by sperm from allo-specific males, but usually without their genetic input. "Hybridogenetic reproduction in a broad sense" (Stöck and Lamatsch, 2002) can be termed different hemiclonal (Schultz, 1969) and meroclonal (Vinogradov et al., 1990) mechanisms, characterized by elimination of complete chromosome sets and clonal or meiotic inheritance of the remaining sets (e.g. Alves et al., 2001; Günther et al., 1979; Günther, 1990; Stöck et al., 2002). Remarkably, several vertebrate complexes (mainly fishes, amphibians and few reptiles) include animals of various ploidy levels and show common occurrence of these main reproductive modes, in which clonal, hemiclonal and/or meroclonal as well as sexual mechanisms contribute to genetic diversity, interaction of ploidy levels and evolution (e.g. Darvesky et al., 1989; Alves et al., 2001; Günther, 1990; Zhou et al., 2000; Bogart and Klemens, 1997; Goddard et al., 1998; Bogart, 2003; Rab et al., 2000; Vasilev et al., 2003; Ogielska et al., 2004; Plötner, 2005). This genomic diversity and plasticity and in some systems the interaction of individuals with sexual and asexual reproduction makes them ideal systems to address an enormous variety of evolutionary questions. This includes consequences of gene and genome doubling, evolutionary genetics of hybridization with the interplay of two or more foreign genomes in one nucleus and one organism, hybrid fertility and fitness, sex determination, occurrence or absence of meiosis, crossing over and consequences of the partial loss, or maintenance, of recombination, and finally hybrid ("recombinational", Coyne and Orr, 2004, or "collective" Morjan and Rieseberg, 2004) speciation and evolution.

In this comparative context green toads of the Palearctic Bufo viridis subgroup (Borkin, 1999; Stöck et al., 2001a) stand out. They are the only known complex of amphibians
that comprises diploid (2n), ${ }^{1}$ tetraploid (4 n ; Mazik et al., 1976) and even triploid (3n; Stöck et al., 1999, 2002) bisexually reproducing taxa. Whereas 2 n and 4 n toads reproduce meiotically, one of the three chromosome sets of South Asian 3n Bufo pseudoraddei seems neither to participate in crossing over nor in random segregation (recombination) during meiosis but rather is clonally inherited (females) or eliminated (males; Stöck et al., 2002), a mechanism related to hybridogenesis. In High Asia, i.e. in the eastern Pamirs, Karakoram, Hindukush and western Himalayas, green toad taxa of all three ploidy levels occur allopatrically in similar high mountain environments (Stöck et al., 2001b). Cytogenetic data (Stöck et al., 2005) suggest that Central Asian 4ns have evolved independently at least twice, and there is morphological evidence for two separate 3n taxa (Stöck et al., 2001a).

For the Asian green toads, we use the nomenclature as revised by Stöck et al. (2001a) who provided information on name-bearing types, type localities, nomenclatural and systematic histories, ploidy level, bioacoustics, distribution, proposed current taxonomic status, and a tentative identification key. Among diploid toads, they tentatively distinguished the taxa: (1) B. viridis with nominal subspecies $B . v$. kermanensis, B. v. shaartusiensis, B. v. turanensis and B.v. ssp. [formerly "arabicus"]), and (2) B. latastii latastii. They recognized two tetraploid species: (I) B. oblongus Nikolsky, 1896, with B. o. oblongus and B. o. danatensis-provisionally called "Western Central Asian Tetraploids", and (II) B. pewzowi Bedriaga, 1898, with nominal subspecies B. p. pewzowi, B. p. unicolor, B. p. strauchi and B. p. taxkor-ensis,-termed "Eastern Central Asian Tetraploids". In the literature of the 1980s and 1990s, all Central Asian tetraploids (now B. oblongus, B. pewzowi) were mostly called "B. danatensis", a younger subjective synonym of Bufo oblongus. Bisexual triploid taxa are represented by B. pseudoraddei (Mertens, 1972), with B.p. pseudoraddei and B. p. baturae. Because of contradictory data or unknown ploidy, the status of B. asiomontanus and B. zugmayeri remained unclear (further details: Stöck et al., 2001a).

The polytypic B. viridis subgroup (sensu Stöck et al., 2001a, see Section 4) inhabits an enormous Palearctic range, and previous morphological and general biogeographic knowledge suggest the occurrence of multiple

[^1]

Fig. 2. Geographic range of the Bufo viridis subgroup in High Asia with sampling localities. See legend and Appendix A for locality IDs.
lineages, as there has been no range-wide analysis of molecular variation. Consequently, a first step towards the understanding of the evolution of the subgroup is to generate a comprehensive phylogenetic and phylogeographic hypothesis of the 2 n lineages, and to analyze the mitochondrial relationships of the polyploids.

Two hypothesis can be tested: (i) The bisexually reproducing 3 n south of the Karakoram-Hindukush watershed and the 3 n forms in north central Asia, geographically close to 2 n and 4 n toads, are derived from the same recent mitochondrial ancestor or (ii) all these forms represent descendents of several polyploidizations involving different lineages.

In this paper, we present mtDNA evidence for separate matrilineal ancestry of 3n B. pseudoraddei and 4n Central

Asian polyploid taxa (B. pewzowi, B. oblongus) and report the discovery of a new likely sexually reproducing $3 n$ taxon (B. zugmayeri), which also belongs to the Central Asian lineage. Our phylogeographic analysis of this subgroup also provides a comparative historic biogeographic perspective derived from one of the most widespread amphibian complexes of the Palearctic realm.

2. Materials and methods

2.1. Sampling, DNA extraction, PCR conditions

A total of 325 specimens [135 $2 \mathrm{~ns}(+2$ presumably 2 ns), 1143 ns (+3 presumably 3 ns), 714 ns] of the B. viridis sub-

Fig. 3. Phylograms resulting from a Bayesian analysis of d-loop sequences (left) and a ML-analysis of $N D+t R N A s$ (right). D-loop tree (left): ploidy levels (e.g. 4n), sample ID (max. three digits, see Appendix A), and locality ID as in (Figs. 1 and 2). F_{1} individuals resulting from crosses are designated by a "C" or "Hy" instead of a locality ID. Note potentially applicable taxon names for many groups. Color-labeled individuals in the d-loop tree (left) are identical to those that yielded the $N D+t R N A$ sequences for the tree on the right. Groups A-C all belong to the "Central Asian clade". For both trees, Bayesian posterior support values are shown above major nodes $(*=100)$, below Maximum likelihood bootstrap values $(N D+t R N A s)$. For the Central Asian Clade, Q-banded chromosomes 6 of two tetraploid forms (B. oblongus, B. pewzowi) are depicted.

group, originating from 124 (85 for $2 \mathrm{n}, 11$ for $3 \mathrm{n}, 28$ for 4 n) localities (Figs. 1 and 2) throughout the Palearctic range were included (see Appendix A). For most toads from the range of the polyploids we have karyotypic as well as microdensitometric or flow cytometric data on ploidy of sequenced specimens (Stöck, 1997, 1998a,b, Stöck et al., 1999-2005). Several additional specimens were karyotyped (data not shown). Green toads from the B. viridis subgroup, which occur west of a line between western Iran and northwestern Kazakhstan, were considered 2 n because no previous study has revealed polyploids (Borkin, 1999; Stöck et al., 2001b), except as rare accidental cases (Odierna et al., 2004) presumably resulting from unreduced ova (Bogart, 1972). In addition, diploidy of several green toads from North Africa was confirmed by flow cytometry. If no ploidy data were available, all samples east of $80^{\circ} \mathrm{E}$ were considered 4 n , because neither 2 n nor 3 n have been detected in that region (Borkin et al., 2001; Stöck et al., 2001b). In a small number of cases, tissue samples from remote localities without ploidy information were included. Toads were collected by the authors or provided by natural history museums and many colleagues (see Acknowledgements). We also included crosses $\left(\mathrm{F}_{1}\right)$ resulting from two chromosomally different 4 n taxa (B. oblongus father \times B. pewzowi mother), from 3n (B. pseudoraddei baturae father) with 2 n (B. latastii mother) toads obtained in the laboratory, and from a natural cross (B. calamita father $\times B$. v. viridis mother), in order to test for maternal inheritance of the mitochondrial marker. All tested F_{1} from these three interspecies crosses (Appendix A for details) shared their marker with their mothers (Fig. 3: "C", "Hy") and confirmed that d-loop sequences represent authentic mtDNA. Many specimens from the 3n B. pseudoraddei baturae and 2n B. latastii were released after blood sampling but vouchers are available from these and many other populations (Appendix A). From some localities, toe clips or tail tip samples of tadpoles were used. In order to test for common ancestry and maternal contribution to the formation of polyploids of the B. viridis subgroup, we also sequenced d-loops and $N D+t R N A s$ of several taxa previously considered to be related or even closely related members of the subgroup (B. arabicus, B. brongersmai, B. calamita, B. luristanicus, B. mauritanicus, B. raddei, B. surdus and B. stomaticus). While B. raddei served as the "outgroup" taxon for the phylogenetic analyses of the d-loops, B. regularis was used for rooting the " $N D+t R N A s$ " tree (see below).

Genomic DNA was extracted from frozen or ethanol preserved blood, liver, muscle tissue, pooled organs (tadpoles) and muscle of vouchers from scientific collections using a phenol-chloroform extraction ($\sim 20 \%$ of samples) or the Quiagen DNeasy ${ }^{\text {TM }}$ kit. About 880 bp were amplified, comprising most of the mitochondrial control region ($=$ " d loop"; primers ControlB-H, CytbA-L; PCR: $96^{\circ} \mathrm{C}, 2 \mathrm{~min}$, denaturation; $52^{\circ} \mathrm{C}, 45 \mathrm{~s}$, annealing; $72^{\circ} \mathrm{C}, 2 \mathrm{~min}$, extension; cycle $\left[94^{\circ} \mathrm{C}, 30 \mathrm{~s}\right.$, denaturation, $52^{\circ} \mathrm{C}, 45 \mathrm{~s}$ annealing, $72^{\circ} \mathrm{C}$, 1.5 min , extension] 38 times; $72^{\circ} \mathrm{C}$, final extension, 5 min ; Goebel et al., 1999). In representatives from most clades (and ploidy levels), as revealed from analyses of d-loop
sequences (see below), as well of B. calamita, B. brongersmai, B. bufo and B. regularis, we sequenced an additional 1100 bases of mtDNA extending from ND1 through the $t R N A^{1 \mathrm{le}}$, $t R N A^{\mathrm{Gln}}$, and $t R N A^{\text {Met }}$ genes to ND2 (termed " $N D+t R N A s$ " here), as described by Macey et al. (1998a,b). All PCR-products were sequenced in both directions on an ABI 3730 sequencer. Sequences were aligned using Sequencher, v. 4.1.2 and adjusted by eye using MacClade 4.06.

2.2. Phylogenetic and phylogeographic analysis

The complete alignment of d-loop sequences comprised 898 characters. Because of questionable alignment, characters 125-166 were excluded from the analyses. We applied MrModeltest (vers. 2.0 modified from Modeltest, Posada and Crandall, 1998, by J.A. Nylander, Uppsala Univ., Sweden) for determining the best fitting model of sequence evolution (HKY+I+G, AICE). We inferred phylogeny with Bayesian statistics (MB, MrBayes v. 3.0b4; Huelsenbeck and Ronquist, 2001), running four chains for 10 million generations, with tree sampling every 1000 generations. We also estimated relationships using neighbor joining (NJ, 1000 bootstrap pseudoreplicates) and parsimony methods (MP, 100 bootstrap steps) as implemented in PAUP, vers. 4.0b10 (Swofford, 2002). For analysis of $N D+t R N A \mathrm{~s}$, we used ML-settings from Modeltest in PAUP (HKY+I+G, Nst $=2$, TRatio $=6.7648$, Rates $=$ gamma Shape $=0.7208$, Pinvar $=0.5616,100$ bootstrap steps). For some d-loop clades, we used the parsimony-based network analyses program TCS (vers. 1.18, Clement et al., 2000).

2.2.1. Genealogical analysis, estimations of evolutionary rates and minimum divergence times

We estimated the age of population expansion for green toad groups as found in a certain geographical region using Fluctuate (Kuhner et al., 1998) by obtaining maximum likelihood estimates for θ ($2 N \mu ; \mu$ is DNA substitution rate per site per generation, N is the current female effective population size) and g (the historical exponential growth parameter). Repeated analyses to ensure stability of estimates were run with random seeds, 10 short Monte Carlo chains of 4000 steps, and five long chains of 20,000 steps. Growth was inferred using logarithmic likelihood ratio tests with one degree of freedom (Huelsenbeck and Rannala, 1997). If a nogrowth model was rejected, g values were used to approximate the time at which effective population size was 10% of the current effective size by applying our DNA substitution estimate. Estimates of exponential growth (g in units of μ^{-1}) were used to approximate population size at time t in the past from $N_{t}=\theta^{\mathrm{e}-(\mathrm{g} \mu) t}$ where N_{t} is the effective size at time t in the past (Kuhner et al., 1998; Wares and Cunningham, 2001). Using this equation, t was estimated by substituting N_{t} with $N_{t} / N_{t=0}=0.1$. We also calculated Tajima's D using the program Arlequin 2.000 (Schneider et al., 2000). For each estimate we define a population by the geographical region in which a clade is found. We assume that the time at which the effective size was 10% is an approximation of a population's
minimum age. We also assume that each clade's current distribution encompasses its place of origin, and that each clade is defined by an ancestral haplotype and all regional descendants. As another indication of population growth, we report Tajima's D, which is expected to be significantly negative under demographic expansion or a recent selective sweep at a linked locus (Tajima, 1989).

Estimated rates of anuran mtDNA-substitution (Macey et al., 1998a,b), comparisons of coding and d-loop-mtDNA (Liu et al., 2000; Sumida et al., 2000) and major geological events such as the last connection of Africa and Europe and the fossil record served for rough calibrations. We estimated the d-loop (and $N D+t R N A$) rate(s) by assuming that the last landbridge between North Africa and Sicily broke off about 5.3 Mya, i.e. the Strait of Sicily was formed at the end of the Messinian salinity crisis at the Miocene/ Pliocene boundary (e.g. Jaeger et al., 1987; Krjigsman et al., 1999; Butler et al., 1999; Dobson and Wright, 2000; F. Rögl pers. comm.). By comparing populations from north and south of the Strait of Sicily, d-loop and $N D+t R N A$ rates were estimated from the average pairwise genetic divergences between the respective samples using the best fitting substitution model (Modeltest). Because the mtDNA MRCA is likely to precede the population divergence (Arbogast et al., 2002), we corrected d-loop sequence divergence for ancestral polymorphism by assuming that the ancestral divergence is equivalent to the divergence found in current African samples. Using this rate estimate, other divergence times among pairwise regional groups were estimated with $\mu=\left(\pi_{\mathrm{b}}-\pi_{w}\right) / 2 \tau$, where τ is the divergence time, μ is the DNA substitution rate per locus per generation, π_{b} is the average number of pairwise differences between sampled populations, and π_{w} is the average number of pairwise differences within populations (Nei and Li , 1979). In all cases, pairwise genetic distances were based on the best-fit model of DNA evolution. This method assumes migration among regions to be negligible, a reasonable assumption given regional monophyly. Divergence times were estimated among all green toad "regional taxa", defined by the most inclusive haplotype clades associated with major geographic regions. We also conducted log-likelihood ratio tests (Huelsenbeck and Rannala, 1997) using PAUP to test for a molecular clock in D-loop and in $N D+t R N A$ s alignments using different Bufo-species as outgroups and tested these in Bayesian and ML-trees, respectively.

3. Results

Bayesian, NJ, and MP analyses distinguished twelve major mitochondrial clades (d-loop), most of which are well supported and differ substantially from each other (Fig. 3). In clades of diploids and clades containing polyploids both mitochondrial markers reflect deep divergences in an old group with substantial structure and up to $\sim 30 \%$ divergence, and $>2 \%$ between the youngest sister clades (Table 1). Most clades are distributed allo- or parapatrically. Only two 2 n clades ($2 \mathrm{n}-\mathrm{VI}, 2 \mathrm{n}-\mathrm{VII}$) exhibit apparent
wide range overlap (Fig. 1). Polyploids belong to two major clades, the 'Central Asian clade' (Fig. 3) and the clade comprising two nominal subspecies of $3 n B$. pseudoraddei (3n-I, 3n-II). The geographic distribution of clades (Fig. 1) reflects the expected higher genetic diversity in the south than in the north, with all clades present between 30° and 40° but only three between 45° and $55^{\circ} \mathrm{N}$.

Likelihood ratio tests for clocklike evolution were sensitive to different outgroup species, suggesting difficulties in estimating the correct model of sequence evolution and/or correct alignment. When the $N D+t R N A$ s ML-tree for all green toads was rooted with B. calamita, clocklike evolution was found. We estimated divergence for the $\mathrm{Pi}_{\mathrm{NET}}$ rate $=$ 0.06777 per d-loop per 5.3 My (ca. 1.278% divergence per My), $\mathrm{Pi}_{\text {BTw }}$ rate $=0.08712$ per d-loop per 5.3 My (ca. $1.644 . \%$ divergence per My) and the $\mathrm{Pi}_{\mathrm{BTW}}$ rate $=0.0571$ per $N D+t R N A s$ (ca. 1.077% divergence per My).

Below, we characterize the various clades based on ploidy, geographic ranges and/or taxonomic identity using the Bayesian d-loop phylogram (Fig. 3).

3.1. Groups of diploid green toads

Mitochondrial DNA of the 2 n taxa belongs to nine major clades which cover the entire Palearctic range with the exception of the Asian high mountain and eastern continental desert areas that are dominated by polyploids (3n, $4 n$).

3.1.1. 2n-I Western Himalayas

MtDNA of the geographically isolated high mountain 2n Bufo latastii from the western Himalayas (Ladakh, loc. 111) is most closely related to that of a single specimen of the poorly known B. surdus, and both form an early diverged sister group to all remaining green toad mitochondrial lineages. Bufo latastii exhibits slight chromosomal differences but close bioacoustic and morphological affinities to other B. viridis subgroup taxa (Dubois and Martens, 1977; Stöck et al., 2001a). Substantial haplotype structure in clade 2 n -I may be explained by an origin of toads from different tributaries of the Indus, which meet at Skardu/ Ladakh (loc. 111). A zero growth model could not be rejected by Fluctuate and Tajima's D (0.096). This lineage is of considerable age and might have diverged from the mtDNA-lineage to all remaining green toads more than 20 Mya (Table 1).

3.1.2. 2n-II Southeastern Sicily

Four identical d-loop sequences of unnamed green toads from the San Leonardo river in southeastern Sicily (loc. 19), isolated by the Mt. Etna massif from northern Sicily (loc. 20 of 2 n -VIII), represent a sister clade to the mtDNA of all African green toads ($2 \mathrm{n}-\mathrm{III}$). This old relationship is also confirmed by the $N D+t R N A$ s (Fig. 3) and was used to calibrate the divergence time estimates, assuming the most recent common ancestor (MRCA) with clade $2 n-$ III may have existed at least 5.3 Mya.

Table 1
Average divergence between different groups of toads and minimum divergence time estimates based on mitochondrial sequences

Nominal taxa			B. variabilis (2n)			B. viridis (2n)			B. boulengeri (2n)			unnamed (2n)			B. balearicus (2n)			B. pewzowi $(4 \mathrm{n})+$ B. turanensis (2n) $+3 n$ (F1-hybrids?)			B. oblongus (4n) + B. turanensis (2n)			$\begin{array}{\|c\|} \hline \text { unnamed } \\ (4 \mathrm{n}) \text {, } \\ \text { B. zugmayeri } \\ (3 \mathrm{n}) \end{array}$		B. pseudoraddei baturae (3n)			B. pseudoraddei pseudoraddei (3n)		B. latastii (2n)		
D-loop clades, ploidy groups included, Individual sample number for ND+tRNA marker			Asia Minor			Europe			Africa			Sicily			S-Italy, W-Mediterranean Islands			E-Central Asia			W-Central Asia			B. Balkhan, N -Baluchistan		Karakoram, Chitral			W-Himalaya, E-Hindukush		W-Himalayas		
				-VI	2 238	2n-VII		2 2168	2n-III		2 n166	2n-II		2 2n25	2n-VIII		$2 n 175$	$\begin{gathered} \text { A (2n-IV, } \\ 3 n-I I I, 4 n-I) \end{gathered}$		$4 n 194$	$\begin{gathered} \text { B (2n-V, } \\ 4 \mathrm{n}-\mathrm{II}) \end{gathered}$		$\left.\begin{array}{r} 2 n 216 ; \\ 4 n 96 \end{array} \right\rvert\,$	$\begin{gathered} \text { C (3n-IV, } \\ 4 \mathrm{n}-\mathrm{III}) \end{gathered}$		3n-II		$3 n 65$	3n-I		2n-I		$2 n 81$
Asia Minor	2n-VI	2 2 28				4.06	3.16	4.48	9.88	7.69	10.67	10.83	8.42	10.23	4.59	3.57	6.43	3.94	3.07	4.1	4.1	3.19	$\begin{aligned} & 4.10 ; \\ & 4.27 \\ & \hline \end{aligned}$	4.44	3.46	7.97	6.2	6.47	7.63	5.93	19.58	15.23	25.09
Europe	2n-VII	2 n 168	5.19	6.92	4.82				10.11	7.87	10.18	10.45	8.13	11.26	4.87	3.79	5.79	4.65	3.62	3.59	4.56	3.54	$\begin{aligned} & \hline 3.51 ; \\ & 3.36 \\ & \hline \end{aligned}$	4.22	3.28	7.93	6.17	6.52	7.25	5.64	20.72	16.12	27.81
Africa	2n-III	2 n 166	12.64	14.92	11.49	12.93	14.31	10.97				NA*	NA*	NA*	10.08	7.84	12.91	9.08	7.06	9.38	8.87	6.9	$\begin{aligned} & 9.72 ; \\ & 9.88 \end{aligned}$	9.24	7.19	9.99	7.77	11.22	9.99	7.77	23.51	18.29	29.71
Sicily	2n-II	$2 n 325$	13.84	15.16	11.02	13.36	13.77	12.13	7.74	8.71	5.71				12.51	9.73	12.78	9.53	7.41	10.37	9.64	7.5	$\begin{gathered} \hline 10.94 ; \\ 10.75 \\ \hline \end{gathered}$	10.5	8.17	11.64	9.05	9.74	11.27	8.76	23.46	18.25	29.15
S Italy, W. Med. Isl.	2n-VIII	$2 n 175$	5.86	8.00	6.93	6.53	7.46	6.24	12.89	14.67	13.71	16.00	16.62					5.24	4.07	5.76	5.11	3.97	$\begin{gathered} 6.02 ; \\ 5.58 \end{gathered}$	5.48	4.26	7.27	5.66	8.58	6.89	5.36	21.34	16.6	30.87
E. Central	$\begin{gathered} \hline \mathbf{A}(2 \mathrm{n}-\mathrm{IV}, \\ 3 \mathrm{n}-\mathrm{II}, 4 \mathrm{n} \\ \mathrm{I}) \end{gathered}$	$4 n 194$	5.04	7.12	4.42	5.95	7.13	3.97	11.61	13.35	10.10	12.18	12.95	11.17	6.70	8.29	6.20				2.23	1.73	$\begin{aligned} & 1.14 ; \\ & 0.86 \end{aligned}$	0.76	0.59	7.33	5.7	6.47	7.01	5.46	21.04	16.37	27.73
W. Central Asia	$\begin{gathered} \hline \mathbf{B}(2 \mathrm{n}-\mathrm{V}, \\ 4 \mathrm{n}-\mathrm{II}) \end{gathered}$	$\begin{array}{r} 2 n 216, \\ 4 n 96 \\ \hline \end{array}$	5.24	7.26	$\begin{array}{\|c\|} \hline 4.60 ; \\ 4.42 \\ \hline \end{array}$	5.82	6.94	$\begin{array}{\|c\|} \hline 3.79 ; \\ 3.62 \\ \hline \end{array}$	11.34	13.01	$\begin{array}{\|c\|} \hline 10.64 ; \\ 10.10 \\ \hline \end{array}$	12.33	13.03	$\begin{gathered} \hline 11.79 ; \\ 11.58 \\ \hline \end{gathered}$	6.53	8.06	$\begin{array}{\|c\|} \hline 6.49 ; \\ 6.02 \\ \hline \end{array}$	2.85	4.32	$\begin{aligned} & \hline 1.23 ; \\ & 0.93 \\ & \hline \end{aligned}$				1.19	0.92	7.87	6.13	$\begin{aligned} & \hline 6.33 ; \\ & 6.47 \\ & \hline \end{aligned}$	7.44	5.78	19.68	15.31	$\begin{aligned} & 27.77 ; \\ & 28.03 \\ & \hline \end{aligned}$
B. Balkhan, Baluchistan	$\begin{gathered} \mathbf{C}(3 \mathrm{n}-\mathrm{IV}, \\ 4 \mathrm{n}-\mathrm{II}) \end{gathered}$	1	5.68	7.3	1	5.40	6.11	1	11.82	13.09	,	13.42	13.73	,	7.01	8.13	,	0.97	2.04	1	1.52	2.53	1			6.96	5.42	1	6.72	5.23	21.19	16.48	1
Karakoram	3n-II	$3 n 65$	10.20	11.53	6.98	10.14	10.57	7.02	12.78	13.77	12.09	14.88	14.90	10.49	9.30	10.15	9.24	9.37	10.16	6.97	10.07	10.80	$\begin{aligned} & \hline 6.82 ; \\ & 6.97 \\ & \hline \end{aligned}$	8.90	9.23				1.58	1.23	25.36	19.72	29.00
W. Himalaya E. Hindukush	3n-I	1	9.75	11.86	1	9.27	10.47	/	12.77	14.53	/	14.41	15.20	1	8.81	10.42	/	8.97	10.53	1	9.51	11.01	/	8.60	9.69	2.02	2.84	/		1.59	25.06	19.49	1
W. Himalaya	2n-I	$2 n 81$	25.03	27.2	27.04	26.50	27.76	29.97	30.06	31.88	32.01	30.00	30.85	31.41	27.28	28.96	33.27	26.91	28.53	29.87	25.17	26.73	$\begin{array}{\|r\|} \hline 29.93 ; \\ 30.20 \\ \hline \end{array}$	27.09	28.25	32.42	33.30	31.24		33.68			

Upper right triangle: Minimum divergence time estimates (My); light columns: estimates based on divergence rate Pi $\mathrm{Pi}_{\text {NET }}$ rate $=0.067765$ per d-loop per 5.3 My [ca. 1.278% divergence per My]; gray columns: estimates based on divergence rate $\mathrm{Pi}_{\text {BTw }}$ rate $=0.08711833$ per d-loop per $5.3 \mathrm{My}\left[\mathrm{ca} .1 .644 \%\right.$ divergence per My]; gray columns with numbers in $i t a l i c s: ~ \mathrm{P}_{\mathrm{B}} \mathrm{m}$ rate $=0.05710676$ per $N D+t R N A$ [ca. 1.077% divergence per My]; dark frame marks sister relationship used for calibration. Lower left triangle: Average divergence between groups (\%), light columns: Pi $\mathrm{P}_{\mathrm{NET}}$ distances; gray columns $\mathrm{Pi}_{\text {BTW }}$ distances.

* Because the four Sicilian samples lacked any sequence differences and the ancestral polymorphism was likely more similar to the current African sample, we based the π_{w} value on this only.
Table 2
Demographic analysis of various green toad taxa and groups as revealed from mtDNA d-loop analysis

Mitochondrial d-loop clade (or ploidy group)	Taxon	N	Theta	g	Ln (likelihood) for $L_{\text {max }}$	Ln (likelihood) for zero growth	$\begin{aligned} & 2\left(L_{\max }-\right. \\ & \left.L_{\mathrm{g}}=0\right) \end{aligned}$	No growth can be rejected	Tajima's D	p	MinAge estimate for corrected rate $\left(\mathrm{Pi}_{\mathrm{NET}}\right)$ (Mya)	MinAge estimate for non-corrected rate $\left(\mathrm{Pi}_{\mathrm{BTW}}\right)(\mathrm{Mya})$
Western Himalayas (2n-I)	B. latastii	16	0.0143	45.465	0.0051	-0.1354	0.281	No	0.09572	0.40	NA	NA
North Africa (2n-III)	B. boulengeri	19	0.0935	11.62	0.0091	-0.3864	0.791	No ($p \sim 0.35$)	-0.93585	0.19	NA	NA
Europe (2n-VII)	B. viridis	27	0.0154	66.407	0.0698	0.001	0.1376	No ($p \sim 0.11$)	-1.02858	0.16	NA	NA
Asia Minor (2n-VI)	B.variabilis	46	0.1589	87.934	0.011	-4.578	9.178	Yes	-1.31292	0.09	2.44	1.17
(A) Eastern Central Asia $(2 n-I V+3 n-I I I+4 n-I)$	Group A	44	0.1006	262.377	0.1066	-7.0139	14.241	Yes	-0.27707	0.41	0.681	0.471
Eastern Central Asia (2n-IV)	B. turanensis	7	0.1269	-2.8881	0.249	-4.0623	8.6226	NA	-1.1176	0.15	NA	NA
Eastern Central Asia (3n-III)	hybrids ($2 \mathrm{n} \times 4 \mathrm{n}$) ?	3	NA									
Eastern Central Asia (4n-I)	B. pewzowi	32	0.0935	242.0563	0.0041	-4.7767	9.5616	Yes	-0.1615	0.45	0.678	0.464
(B) Western Central Asia $(2 n-V+4 n-I I)$	Group B	37	0.0955	103.87	0.0769	-3.717	7.5878	Yes	-1.28285	0.10	1.682	1.16
Western Central Asia (2n-V)	B. turanensis	14	0.0456	410.0382	0.0390	-2.1518	4.3816	Yes	-0.64087	0.27	0.285	0.184
Western Central Asia (4n-II)	B. oblongus	23	0.0474	86.2195	0.0199	-1.8963	3.8324	No ($p \sim 0.06$)	-1.17946	0.12	1.39	0.90

3.1.3. 2n-III $2 n$ North Africa

Toads from western Morocco to eastern Egypt differ substantially from the geographically nearest diploids in the Middle East (e.g. loc. 46, 47), and 2 n toads ($2 \mathrm{n}-\mathrm{VIII}$) on western Mediterranean islands (loc. 4, 7, 20) and in southern Italy (loc. 21). However, clade 2 n -III is sister taxon to Sicilian 2n-II. Neither Fluctuate nor Tajima's D reflected population growth (Table 2). The sister clades $2 \mathrm{n}-\mathrm{II}$ and 2 n III form a well-supported group, which is the sister taxon to all $2 \mathrm{n}, 3 \mathrm{n}$ and 4 n green toads [except B. latastii ($2 \mathrm{n}-\mathrm{I}$) and B. surdus] and probably diverged from these between 7 and 12 Mya (Table 1). The application of the name Bufo boulengeri Lataste, 1879 [nomen nudum according to Frost, 2004] to African green toads is justified because the B. boulengeri type is extant in BMNH (Clarke, pers. comm.).

3.1.4. Diploids in the Central Asian clade

For analyses of maternal ancestry of the two $4 n$ taxa, we divided the Central Asian clade into three groups (Fig. 3: groups A-C), mainly based on specific chromosomal characters in each of the $4 n$ taxa in groups A and B (see below). This approach also results in a somewhat artificial subdivision into two diploid groups ($2 \mathrm{n}-\mathrm{IV}, 2 \mathrm{n}-\mathrm{V}$), whose differences may simply reflect isolation by distance. The name B. turanensis is applied (Stöck et al., 2001 a) to these large-sized diploid toads ($2 \mathrm{n}-\mathrm{IV}, 2 \mathrm{n}-\mathrm{V}$), but data from the type locality (Dushanbe, Tajikistan) are lacking.
3.1.4.1. 2n-IV Eastern Central Asia. Diploid toads in this paraphyletic group A were detected in the semi-desert and steppe of northern Kazakhstan (loc. 85, 86, 88) and N to the Tian-Shan of northern Kyrgyzstan (loc. 91, 94). Analysis of seven d-loops of 2 ns provided a negative value for growth ($g=-2.88$, Fluctuate) but also negative Tajima's D (close to significance). The mtDNA phylogeny is tightly intertwined with groups 3 n -III and $4 \mathrm{n}-\mathrm{I}$ (B. pewzowi) of the same region. We treat them as a paraphyletic "group A" (Figs. 3 and 4). The closest relatives of group A are clades B ($2 n-\mathrm{V}+4 \mathrm{n}-\mathrm{II}$) and $\mathrm{C}(4 \mathrm{n}-\mathrm{III}+3 n-\mathrm{IV})$, with which they form the moderately supported "Central Asian clade" (Fig. 3).
3.1.4.2. 2n-V Western Central Asia. Mitochondrial sequences of $2 \mathrm{n}-\mathrm{V}$ in northeastern Iran (loc. 69-72) and the Kopet Dagh range of eastern Iran and western Turkmenistan (loc. $76,77,81)$ show high growth values $(g=410)$ based on Fluctuate and a negative Tajima's D (-0.64 ; but not significant) and suggest expansion of this population, an event that dates between ~ 0.2 and 0.3 Mya . This is only half the estimated (expansion) age of the partly syntopic 4 n -II (see below). The $2 \mathrm{n}-\mathrm{V}$ individuals cluster together with those of $4 \mathrm{n}-\mathrm{II}$ (B. oblongus), with which they form subclade B.

3.1.5. 2n-VI Asia Minor, Middle East and northern Eurasia

This is the only haplotype group found in Anatolia. It also occurs on Cyprus (loc. 41), in the Middle East and western Iran (loc. 60, 64). Toads of this clade are separated from subclade B ($2 \mathrm{n}-\mathrm{V}, 4 \mathrm{n}-\mathrm{II}$) by the central Iranian
deserts. The clade $2 \mathrm{n}-\mathrm{VI}$ occurs in the Caucasus and to the northeast in the steppe zone of northwestern Kazakhstan (loc. 61-67), the northern Aral Sea (loc. 80) and further east (loc. 87, 89). MtDNA in the most northern populations in Scandinavia (loc. 8, 11, 12, 16) belongs to the same clade, either representing a range disjunction or a connection via Eastern Europe (see 4.4), from which data are missing. Toads from western central Iran (loc. 74, B. v. kermanensis) differ from all remaining members of this clade. A specimen from eastern Syria (loc. 53) yielded a shorter sequence (not in tree) but clearly belongs to this group. Separation of the $2 n-V I$ mitochondrial lineage from European (2n-VII), western Mediterranean (2n-VIII) and all Central Asian groups (A-C) is estimated to have happened between Lower and Middle Pliocene, while its separation from mitochondrial ancestors of African (2n-III, 2n-II) and South Asian clades (3n-I, 3n-II, 2n-I) probably dates back to Middle to Lower Miocene (Table 1). Population growth (Table 2) led us to estimate a minimum expansion age of 2 n -VI between 1.2 and 2.4 Mya .

We tentatively refer to these populations as Bufo variabilis (Pallas, 1769), since their range (loc. 8) includes the type locality (Lübeck; Stöck et al., 2001a).

Fig. 4. Parsimony-based haplotype network obtained with the program TCS 1.18 using d-loop sequences of groups A and B of the tree shown in Fig. 3 (left). Gray ellipsoids represent 2 n , white rectangles 4 n and white triangles indicate 3 n toads. Black dots represent hypothetical haplotypes not sampled. Ploidy levels (e.g. 4n), sample ID (max. three digits, see Appendix A), and locality ID as in (Figs. 1 and 2).

3.1.6. 2n-VII Central, southeastern Europe and northern

 AsiaThis clade was detected on the Greek mainland, Crete and in northeastern Italy (loc. 13). It apparently dominates most parts of Central Europe (loc. 10, 14, 15, 22-24), occurs in southeastern Europe (loc. 38) and northwest of the Caucasus (loc. 48, 49, 51). In Russia it reaches the northern edge of the range of the subgroup (loc. 50). Possibly disjunct populations were also found in northeastern (loc. 58) and north central Kazakhstan (loc. 90) where the clade meets $2 \mathrm{n}-\mathrm{VI}$ and 2 n -IV toads. The potentially ancestral haplotype inferred from a network analysis (TCS, not shown) was found in the southern Ukraine (loc. 38) and northeastern Italy (loc. 13) and is only one mutational step apart from Greek and Crete haplotypes. Divergencetime estimates of 2 n -VII from all other clades are nearly identical to those of the Asia Minor clade ($2 \mathrm{n}-\mathrm{VI}$), suggesting that a contemporaneous event was responsible for initial vicariance of $2 \mathrm{n}-\mathrm{VI}$ and $2 \mathrm{n}-\mathrm{VII}$. Although moderate growth was detected, is was not significantly different from a zero growth model (Table 2). Clade 2 n -VII represents B. viridis viridis (loc. 22, 23 near the type locality (Vienna).

3.1.7. 2n-VIII Southern Italy and West Mediterranean islands

MtDNA of 2 n toads from several islands (Corsica, loc. 7; northern Sicily, loc. 20) and the southern Apennine Peninsula (Calabria, loc. 21) clustered together. A museum specimen from Mallorca (loc. 4) provided a shorter readable sequence (not shown in tree) and is assigned to this clade. The small sample size prevented us from application of Fluctuate. This lineage probably diverged from ancestors leading to all European (2nVII), Asia Minor (2n-VI) and Central Asian groups (AC) between the Lower and Middle Pliocene. It may have split from the last common mitochondrial ancestor with the South Asian clades (3n-I, 3n-II, 2n-I) during Lower to Upper Miocene. The name Bufo balearicus Boettger, 1880 is applicable to this taxon (e.g. Garcia-Paris et al., 2004).

3.1.8. 2n-IX Bufo luristanicus

Three sequences of toads from a single locality (loc. 65) form a well supported clade. A phylogenetic position close to B. viridis ($2 \mathrm{n}-\mathrm{VI}$) and B. variabilis $(2 \mathrm{n}-\mathrm{VII})$ is shown by $N D+t R N A \mathrm{~s}$. As compared to the 2 n clades, this taxon differs cytogenetically from them (M. St. unpubl. data).

3.2. Groups of tetraploid green toads

Tetraploid toads exclusively originated from a single, mitochondrial lineage in Central Asia (Fig. 3: "Central Asian clade"). We label these groups based mainly on morphology (Stöck, 1997) and chromosomal characters (Stöck et al., 2005): $4 n-I, 4 n-I I$ and $4 n-I I I$.

3.2.1. 4n-I Eastern Central Asia

4n toads of this group are widely distributed from Uzbekistan (loc. 80) to the west across the Tian Shan (loc. 97-98, 112-113), to the western Altay range (loc. 118121) and the Dzungarian Gobi of Mongolia in the East (loc. 123, 124) and southwards to the eastern Pamirs of northwestern China (loc. 109, 110). Although mitochondrial data are lacking, based on morphology and 4n karyotypes the haplotype group reaches the southeastern most edge of the subgroup's range in the Kun-Lun (northern Tibet). Towards the south, the $>5000 \mathrm{~m}$ high Karakoram range isolates $4 n-I$ from $3 n-I I$ toads (Fig. 2). MtDNA phylogeny of $4 n-I$ is tightly linked to that of $2 n-$ IV and $3 n-$ III (group A) as shown by a haplotype network (Fig. 4). Growth values (242; Table 2) yielded minimum population-growth estimates between 0.5 and 0.7 Mya. Tetraploids of group A share uniform Q-banding patterns (Stöck et al., 2005), differ morphometrically from 4n-II toads (Stöck, 1997) and represent B. pewzowi (Stöck et al., 2001a).

3.2.2. 4n-II Western Central Asia

4ns in northeastern Iran (loc. 75, 78, 79, 82) and western Turkmenistan (loc. 73) show considerable range overlap with $2 n-V$. In group B, toads of both ploidy levels ($2 n-V$, $4 n-I I)$ share a mtDNA subclade and sometimes possess identical haplotypes (Figs. 3 and 4). However, we know only a few localities $(81,82)$ with syntopic occurrence of 2 ns and 4 ns . Moderate growth (Table 2) led to minimum expansion age estimates of 4 n -II between 0.9 and 1.1 Mya, which is older than estimates for other Central Asian toad groups ($4 n-I, 2 n-I V$). $4 n-I$ toads of clade B share distinct Q banding differences in some chromosome quartets (Stöck et al., 2005; our Fig. 3). They represent B. oblongus (details: Stöck et al., 2001a).

3.2.3. 4n-III Bolshoi Balkhan

4 n toads from the isolated mountain Bolshoi Balkhan in the western Karakum desert of Turkmenistan (loc. 68) share the karyotype characteristics (Stöck et al., 2005) of B. oblongus (4n-II) but are morphologically distinct (Stöck, 1997) and lack a name. They represent the sister taxon of 3n-IV, with which they form the well supported clade C, sister group to all Central Asian 2n, $3 n$ and $4 n$ toads in groups A and B (Fig. 3). For 4n-III this is consistent with a long geographical isolation (see Section 4).

3.3. Groups of triploid green toads

Triploid toads belong to two very different mitochondrial lineages: one well supported clade comprising two sexually reproducing triploid South Asian high mountain taxa (3n-I, 3n-II), and the others in the "Central Asian clade" (Fig. 3). In the latter, we detected 3 ns in groups A (3n-III) and C ($3 n-I V$). The $3 n-I / 3 n-I I$ clade, known from high mountain valleys in Karakoram and Hindukush, has no close diploid or tetraploid relatives.

3.3.1. 3n-I Western Himalayas and eastern Hindukush

This well supported clade consists of a population of alltriploid males and females from the isolated upper Swat valley (Fig. 2: loc. 100, western Himalayas) and two morphologically similar toads of unknown ploidy from west of Kabul (loc. 99). Fluctuate yielded negative growth values (apparently caused by the inability of the program to deal with genetic uniformity). The divergence time estimates suggest that the mtDNA lineage of $3 n-I$ separated from all other green toad clades (except the South Asian 3n-II and 2n-I) between Middle and Lower Miocene (Table 1), while the lineage leading to $3 n-I$ perhaps diverged during the early Pleistocene from $3 n$-II but earlier than the Lower Miocene from 2n-I. Based on morphology, Stöck et al. (1999) found $3 n-I$ to be different from 3n-II and the name B. pseudoraddei pseudoraddei to be valid (Stöck et al., 2001a).

3.3.2. 3n-II Karakoram and Chitral

108 triploid toads (only 26 in tree) from eight populations (Fig. 2: 101-107) in the Karakoram and Hindukush valley of Chitral, inhabiting three different high mountain drainages (Chitral, Gilgit, Hunza river), show almost no variation of d-loop sequences. This indicates a single origin of all $3 n-I I$ toads and suggests their recent range expansion to these localities (101-107), although a formal test (Fluctuate) is precluded by the extraordinarily low genetic diversity. The valid name is B. pseudoraddei baturae (Stöck et al., 1999, 2001a). It represents a mitochondrial sister clade of B. p. pseudoraddei (3n-I), from which it was separated during the Pleistocene (Table 1). In contrast, the lineage leading to B. p. baturae (3n-II) separated very early (at least Lower Miocene, Table 1) from the mitochondrial lineage of geographically close B. latastii (2n-I, western Himalayas, Figs. 1 and 2: loc. 111). Although the minimal absolute distance is below 100 km , mtDNA genotypes of $3 n-\mathrm{II}$ are isolated by the Kunyerab Pass $(>4600 \mathrm{~m})$, and therefore are highly differentiated from B. pewzowi (4n-I) in China (loc. 109, 110), which reached the eastern Pamirs (loc. 109) from the north and represents a clade which may have shared a most recent common mitochondrial ancestor with the $3 n-I+3 n-I I$ lineage in the late Miocene (7.3-5.7 Mya). The Central Asian clade includes triploids from a single site in northern Baluchistan (loc. 84) and triploids in zones of range overlap between diploid (2n-IV) and tetraploid (4n-I) in northern central Asia.

3.3.3. 3n-IV Northern Baluchistan

Eight toads from the type locality of B. zugmayeri (Pakistan, Pishin, loc. 84) have a very similar d-loop sequence. Triploidy based on chromosome preparations of three males and one female suggests the discovery of a second bisexually reproducing all-triploid taxon. Toads from Pishin (loc. 84) are the sister group to 4n-III (loc. 68) and this group C is sister group to all other Central Asian green toads (groups A + B) of our study.

3.3.4. 3n-III Eastern Central Asia

3ns of group B of the Central Asian clade appear to be more closely related to diploids ($2 \mathrm{n}-\mathrm{V}$) than to tetraploids ($4 \mathrm{n}-\mathrm{I}$), suggesting they may be $3 \mathrm{n}_{1}$-hybrids resulting from 2 n female $\times 4 \mathrm{n}$ male crosses (Fig. 4).

3.4. Species excluded as maternal ancestors of polyploid green toads

D-loop sequences of Bufo arabicus, B. brongersmai, B. luristanicus, B. mauritanicus, B. raddei, B. surdus and B. stomaticus differ substantially from that in all polyploid B. viridis subgroup taxa. This excludes B. stomaticus from being the recent maternal ancestor of B. pseudoraddei baturae, with which they are sympatric in the Hindukush (Chitral city, loc. 101). Bufo raddei also did not contribute mitochondrially to allo- or parapatric B. pewzowi (4n-I) in northwestern China and Mongolia (Stöck, 1998b). In addition, B. luristanicus and B. surdus, occurring in sympatry with 2 n B. variabilis (2n-VI) in western and southern Iran, cannot represent the maternal ancestor of western Central Asian B. oblongus (4n-II). Based on their d-loop sequences, B. luristanicus and B. calamita, appear in a polytomy with several other green toads (Fig. 3, left). Nevertheless, B. calamita is not closely related to them based on the $N D+t R N A$ s (Fig. 3, right), bioacoustic (Stöck et al., 2001c) and chromosomal differences. Similarly, $N D+t R N A$ s show B. luristanicus to be more closely related to European B. v. viridis (2n-VII) and B. variabilis (2n-VI) than to Central Asian 4ns, but further biological data on this rarely collected species are needed.

4. Discussion

Our study is a geographically comprehensive genetic analysis of the B. viridis subgroup. The subgroup is notable for its broad geographic range, its unsettled taxonomic and nomenclatural history and, especially, for the presence of polyploids, including sexually reproducing triploid lineages. Our main aims were to (i) provide insights into the historical biogeography of the diploid taxa, and (ii) to investigate the matrilineal history of the diverse polyploid lineages. As expected for such a widespread species group, we found extensive geographically structured variation among diploid populations, consistent with other studies of Eurasian phylogeography, which generally show much greater diversity in the south than in the north. We demonstrate that the polyploids ($3 \mathrm{n}, 4 \mathrm{n}$) have multiple maternal origins. The Central Asian populations show close mtDNA affinity among diploids (B. turanensis) and tetraploids (B. oblongus, B. pewzowi) as well as rare triploids. The sexually reproducing triploids (B. pseudoraddei) have mtDNA that is highly divergent from any sampled diploid population and themselves consist of two divergent clades.

Here, we place the mtDNA results for diploids in the context of the unusually dense fossil record for Eurasian green toads to shed light on geographic origins of the complex and its biogeographic history. We also identify regions
with close geographic proximity or overlap of major mtDNA phylogroups that should be the focus of future studies. Regarding the polyploid lineages, we use the mtDNA evidence, together with karyotypic and genetic data to infer origins, biogeographic history and interactions of the polyploid forms. Our results highlight the dynamic history of these lineages, including likely continuing interactions among diploid and polyploid forms.

4.1. Phylogeographic diversity, origins and historical biogeography of diploid taxa

Within the B. viridis group (B. viridis, B. calamita, B. raddei, B. surdus, B. latastii, B. luristanicus; Borkin, in Frost, 1985, added B. brongersmai), a widely used term coined by Inger (1972), B. viridis itself is nested within multiple, closely related lineages. Stöck et al. (2001a) distinguished these lineages as the B. viridis subgroup, based on bioacoustic, cytogenetic and morphological evidence and included B. latastii, B. oblongus, B. pewzowi, B. viridis viridis, B. turanensis, B. pseudoraddei pseudoraddei, B. p. baturae and we now add B. balearicus, B. boulengeri, B. variabilis, the unnamed taxon from southeastern Sicily, B. luristanicus, and B. surdus. These taxa form a mitochondrial clade based on $N D+t R N A \mathrm{~s}$.

Within this B. viridis subgroup, we report evidence (Dloop, $N D+t R N A s)$ that the diploids belong to nine mitochondrial clades. The earliest diverged western Himalayan B. latastii (2n-I) and its southern Iranian sister species B. surdus represent descendents of an Upper Oligocene/Lower Miocene split (Table 1) from the MRCA with African (2nIII) and all other green toad clades. Isolation by mountain uplifting and speciation of B. latastii in the Kashmir/ Ladakh region might be well linked to the Indian collision with Asia and the rise of the Himalayas.

4.2. Origin of the Bufo viridis group and subgroup in context with the fossil record

Provided our divergence times estimates are correct, green toads (lineages B. latastii, B. surdus) were likely present in Asia before the Afro-Arabian plate first touched Eurasia (~ 18 Mya; Rögl, 1998; Tchernov, 1988) since during the entire Oligocene (33.7-23.8 Mya) and early Miocene (23.8 to ~ 18 Mya), the Mediterranean was a remnant of the Western Tethys, which connected Indo-Pacific and Atlantic and thus separated Afro-Arabia from Eurasia (Rögl, 1998, 1999).

The presence of bufonids north of this sea barrier before Afro-Arabia and Eurasia collided is also supported by the fossil record, because the oldest Old World bufonid fossils come from Paleocene of northern France (Rage, 2003) and middle Oligocene of Kazakhstan (Chikvadze, 1985). Therefore, (1) arrival of bufonids in Eurasia based on fossils and our divergence time estimates seem to reject a "pure Miocene out of Africa hypothesis" for Eurasian toads. One alternative hypothesis (2) of a trans-Beringian invasion of Eurasian toads from the Nearctic (e.g. Blair, 1972; Borkin, 1999: Oligocene) was rejected by Pauly et al. (2004), who
reviewed previous hypotheses on the origin of Nearctic toads but found no close relationship of a single B. viridis to recent Nearctic species. However, (3) Pramuk (2006), using molecular and morphological evidence, finds that Eurasian Bufo lineages form a basal sister clade to a New World radiation. Thus, Miocene bufonids may have reached Europe [as well as the Nearctic?] from Asia (Sanchiz, 1997; Rage and Rocek, 2003). This latter hypothesis is further supported by the fact that all living B. viridis group taxa occur in Eurasia, and two (B. calamita, B. raddei) diverged even earlier, before the B. viridis subgroup arose (Fig. 3). All B. viridis group and subgroup species occur in temperate Palearctic climate (Borkin, 1999). During the estimated early Miocene split of the subgroup, similar to recent climatic conditions probably prevailed (van der Made, 1999), suggesting adaptation of the B. viridis group to temperate environments throughout its history. The northwest African B. brongersmai can no longer be considered close to the subgroup since karyotype (Herrero et al., 1993), advertisement calls (Bogaerts, 2001, call recording in litt.) and larval morphology (Grillitsch et al., 1989), as well as our $N D+t R N A$-phylogeny (Fig. 3), reject close relationships.

The surprisingly rich fossil record for B. viridis or "Bufo aff. viridis" (for overview: Sanchiz, 1998; Kordikova, 1998; Rocek and Rage, 2000; Rage and Rocek, 2003; Böhme, 2003) also shows the oldest known remains to be found in Eurasia (Fig. 1) rather than in Africa (although the latter fossil record is poorly known, Rocek and Rage, 2000). The oldest fossils (Fig. 1) of B. aff. viridis (Claessens, 1997; Rocek and Rage, 2000) come from the Lower Miocene of northern Anatolia (18-20.5 Mya, Böhme, M. in litt.), the Lower Miocene of southeastern France (Rage and Rocek, 2003), central Iberia (Rage and Rocek, 2003; doubtful: Sanchiz, 1998), and southern Germany (17.5-18 Mya; Böhme, 2003). B. calamita is also known from the Lower Miocene of Spain (Rage and Rocek, 2003). Pre-Pleistocene B. viridis fossils are lacking from Central Asia, but B. raddei is reported from the Upper Miocene to the Lower Pleistocene of northeastern Kazakhstan (Chikvadze, 1985; Kordikova, 1998; Sanchiz, 1998). In North Africa, the oldest known B. viridis fossils are only from the Pliocene of Morocco (Bailon, 2000), much younger then the oldest from Eurasia. Taken together, all early fossils were found in Eurasia and are either older than or contemporaneous to the collision of Afro-Arabia and Eurasia (18-19 Mya).

4.3. Miocene and Pliocene splits

Our data show the mitochondrial lineages of the B. viridis subgroup to have diversified since the Oligocene/Early Miocene (Table 1), with five major extant lineages [B. surdus, B. latastii (2n-I), B. boulengeri ($2 \mathrm{n}-\mathrm{III}$), unnamed Sicilian taxon (2n-II), B. pseudoraddei (3n-I, 3n-II)] likely to have diverged during the Oligocene/Miocene ($>23.8-$ 5.3 Mya). All of these occur in the southern part of the range. During the Pliocene (5.3-1.8 Mya), four major hap-
lotype groups [B. balearicus (2n-VIII), B. variabilis ($2 \mathrm{n}-\mathrm{VI}$), B. viridis ($2 \mathrm{n}-\mathrm{VII}$), the Central Asian clade] evolved.

4.4. Late Quaternary recolonization of higher latitudes

The B. viridis subgroup (clades $2 \mathrm{n}-\mathrm{VI}, 2 \mathrm{n}-\mathrm{VII}, 2 \mathrm{n}-\mathrm{VIII})$ reflects biogeographic patterns which were shown for many Palearctic animal and plant species (reviews: Taberlet et al., 1998; Hewitt, 2004; Petit et al., 2003). This includes "extensive extinction and recolonization in higher latitudes and altitudinal shifts and complex refugia nearer the tropics" (Hewitt, 2004). The "southern peninsulas of [...] Italy and the Balkans-Greece, along with the Caspian/Caucasus region [represent] refugia, and taxonomic and genetic diversity [is found] in and among these regions" (Hewitt, 2004). During maximal Pleistocene glaciations, Central European green toads were probably extinct or forced to retract to southern refugia. Therefore, European Miocene fossils (see above) and extant haplotype groups (2n-VI, 2n-VII) cannot be linked. By Late Pleistocene (Early Weichselian), B. viridis had returned to Central Europe (fossils: Mlynarski et al., 1978; Böhme, 1991).

Our study shows potential refugia of clade 2 n -VII on the Balkan Peninsula (loc. 13, 30), perhaps extended to the southern Ukrainian steppe (loc. 38), and a Post-Pleistocene northwestern range expansion to its current western range limit at the Rhine. This scenario fits the shallow structure of 2 n -VII and its star-like radiation (TCS, not shown) from inferred ancestral haplotypes at refugial localities (loc. 38, 13). The most divergent haplotypes (eastern loc. 58, 90 of $2 \mathrm{n}-\mathrm{VII})$ may represent haplotypes at a different glacial refugium or isolates from a previous glacial cycle.

The occurrence of a second northern European clade (2n-VI) in Sweden, Denmark and northern Germany (loc. $8,11,12,16$) underlines mobility of green toads and shows the dynamics of postglacial colonization. We propose two alternative hypotheses: (i) Clade 2 n -VI spread during a previous interglacial cycle and reached the western range in the upper Rhine valley, and colonized Scandinavia to the northeast after the last glacial maximum (LGM). The Rhine/Rhone area is a well-known "major refugium" (Hewitt, 2004). (ii) Alternatively, toads reached southeastern Scandinavia, perhaps via an eastern Carpathian corridor, and/or crossed the Baltic Sea. Under (i) clade 2n-VI is expected in southwestern Germany. If, in contrast, hypothesis (ii) applies, we predict its presence in northern Poland/ northeastern Germany.

4.5. Clade boundaries and possible interactions of diploids

We have outlined major dimensions of clade distribution, but identification of exact clade boundaries and contact zones is a challenge for future research. Studying postglacial colonization will likely reveal several Central and/or east European contact zones (e.g. in Germany) between $2 \mathrm{n}-\mathrm{VI}$ and $2 \mathrm{n}-\mathrm{VII}$, which also meet between Abrau Peninsula (loc. 48, 49, 51) and the Caucasus (loc.
52). High allozyme variation (Karakousis and Kyriako-poulou-Sklavounou, 1995) on the Greek mainland (loc. $25,27-29$) may represent both clades or may stem from their hybridization. Serum albumins of toads (called ' B. viridis arabicus', Flindt and Hemmer, 1968) from southeastern Turkey (Adana, i.e. 2n-VI, close to loc. 42-44) differ from Central-European B. viridis (our 2n-VII). In northwestern Kazakhstan (loc. 58, 61-63, 66, 67), where only 2 ns are reported (Dujsebayeva et al., 2003), both clades ($2 \mathrm{n}-\mathrm{VI}, 2 \mathrm{n}-\mathrm{VII}$) are found in close proximity and in north central Kazakhstan (loc. 85-90) these clades meet a third (2n-IV) in a region where Stipa grass steppe turns into Artemisia semi-desert. While most data suggest geographic sorting (not in Greece $2 \mathrm{n}-\mathrm{VII}, 2 \mathrm{n}-\mathrm{VI}$; unclear for northern Kazakhstan), future research should address whether and where these two (or three) mitochondrial clades are broadly sympatric (as e.g. in B. gargarizans, Fu et al., 2005) or even admixed and might represent cases of non-polyploid reticulate evolution.

Hybridization of small-sized 2n-VI and large-sized 2nIV toads in northern Kazakhstan is suggested by a few individuals that exhibit reciprocal haplotypes and phenotypes. The Asia Minor ($2 \mathrm{n}-\mathrm{VI}$) and the African (2n-III) clades, which may have separated as long as 10 Mya (Table 1), may contact on Sinai, "a major barrier for amphibian dispersal between Africa and Asia" (Borkin, 1999). While this statement is primarily supported by our data, Werner (1982, cit. in Borkin, 1999) listed B. viridis as "the only amphibian [occurring at] the northeastern corner of Sinai as in the Negev" desert. Maxson (1981), using immunology, which also revealed differences between B. viridis from Tunisia (our $2 \mathrm{n}-\mathrm{III}$), Yugoslavia ($2 \mathrm{n}-\mathrm{VI}$ or $2 \mathrm{n}-\mathrm{VII}$) and Israel ($2 \mathrm{n}-$ VI), differentiated B. viridis from northeastern Sinai (El Arish, but also Nahal Kzib, northern Israel) from most other Israeli green toads, raising the possibility that these southwestern populations are of African origin. Size differences (Nevo, 1972) could have the same explanation. For many terrestrial African and Eurasian vertebrates Sinai was an intercontinental crossroad (Tchernov, 1988) until the Pleistocene.
4.6. Origin, interaction and dynamics of lineages containing polyploids

4.6.1. Pliocene origin of and Pleistocene expansions in the Central Asian clade

In the $N D+t R N A$ s tree (Fig. 3, right), the three Central Asian representatives B. oblongus (4n-II), B. turanensis (2nV) and B. pewzowi (4n-I) form a well supported sister clade of the B. v. viridis $(2 \mathrm{n}-\mathrm{VII}) /$ B. variabilis $(2 \mathrm{n}-\mathrm{VI}) /$ B. luristanicus clade. Divergence time estimates (Table 1) based on dloop sequences suggest that the Central Asian clade diverged from geographically neighboring Asia Minor (2nVI) populations in the Pliocene (4.4-3.1 Mya, Table 1), contemporaneous with global cooling and drying, which led to the spread of grasslands, potentially in favor of green toads, a steppe species.

Strong signatures of population growth (4n-I, 4n-II) suggest that mtDNA-lineages of polyploids expanded in the Pleistocene (Table 2), a previously proposed time of 4 n formation (Mezhzherin and Pisanets, 1995), when further cooling and increasing aridity may have resulted in sudden selective advantage of the polyploids, which currently dominate the climatically extreme high mountains and continental cold winter eastern deserts of Central Asia (Stöck et al., 2001b), where they show high temperature tolerance $\left(-30\right.$ to $45^{\circ} \mathrm{C}$; Kuzmin, 1999) and inhabit elevations $<3700 \mathrm{~m}$ a.s.l. (Stöck et al., 2001b). Island patterns of Pleistocene lowland permafrost in Central Asia, as low as 900 m a.s.l. (Aubekerov and Gorbunov, 1999), potentially left space for scattered Pleistocene refugia of cold-tolerant toads. By implication, distinct lowland desert gecko species (Teratoscincus), evolved during the Tertiary northwest and southeast of the Tian Shan (Macey et al., 1999), also must have had Pleistocene refugia in the region.

4.6.2. Hypothetical matrilineal origin of Bufo pewzowi (4n-

 I) and Bufo oblongus (4n-II)Bufo turanensis ($2 \mathrm{n}-\mathrm{V}$) exhibits $\mathrm{Q}-\mathrm{bands}$ in both copies of chromosome 6, while B. oblongus (4n-II) has a karyotype containing two Q-positive and two Q-negative chromosomes 6, suggesting their allopolyploid (hybrid) origin (Stöck et al., 2005). Some Q-positive 2 n toads may have been one of the ancestral forms of these $4 n$ toads. Because the common mitochondrial haplotype in group B of the Central Asian Clade is found in the Q-banding-positive 2ns, they likely represent the maternal ancestors of western Central Asian 4n-II (B. oblongus). If this is correct, then the other, Q-negative paternal ancestor is unknown or may no longer exist.

In group A, B. pewzowi (4n-I) have four Q-banding positive chromosomes 6, suggestive of autopolyploidy. Some Q-positive 2ns must be their ancestors, and the extant B. turanensis (2n-IV) are candidates.

4.6.3. Possible interactions between diploids and tetraploids within the Central Asian clade

In the Central Asian clade, diploid B. turanensis (2nIV, $2 \mathrm{n}-\mathrm{V}$), which are differentiated by calls (Castellano et al., 1998; Stöck, 1998a), morphology (Stöck, 1997) and allozymes (Mezhzherin and Pisanets, 1995) from their tetraploid counterparts ($4 \mathrm{n}-\mathrm{I}, 4 \mathrm{n}-\mathrm{II}$), show close mtDNA affinities to either B. pewzowi ($4 \mathrm{n}-\mathrm{I}$, in group A) or B. oblongus (4n-II, in group B). A haplotype network (Fig. 4) reflects these similar situations in groups A and B with most 4 ns being at least two mutational steps from 2 ns . Pairwise $F_{S T}$ values between $4 \mathrm{n}-\mathrm{II}$ and $2 \mathrm{n}-\mathrm{V}(0.2)$ and $4 \mathrm{n}-\mathrm{I}$ and 2 n-IV (0.38 ; Table) suggest some separation between gene pools of diploids and tetraploids of both groups (A and B). However, two toads of 4n-II (B. oblongus) from Danata (loc. 73, Turkmenistan) have identical mtDNAhaplotypes with $2 \mathrm{n}-\mathrm{V}$ from several northeastern Iranian localities (loc. 69-71, 81), implying multiple origins and retained ancestral polymorphism or some degree of recent

Table 3
Population pairwise F_{ST} values in groups of the Central Asian clade

	$2 n-V$	$4 n-I I$	$2 n-I V$	$3 n-I I I$
2n-V (Western Central Asia)	0			
4n-II (Western Central Asia)	0.20191	0		
2n-IV (Eastern Central Asia)	0.75292	0.57400	0	
3n-III (Eastern Central Asia)	0.77040	0.56410	0.02613 (ns)	0
4n-I (Eastern Central Asia)	0.48036	0.38231	0.34358	0.35531

hybridization. If $2 \mathrm{n}-\mathrm{V}$ and $4 \mathrm{n}-\mathrm{II}$ toads rarely hybridize, "mismatings" may be limited by different calls (Castellano et al., 1998; Stöck, 1998a). Triploid females, reported from one locality (73; Pisanets, 1978), may be fertile, as are other 3 n toads (Stöck et al., 2002) or waterfrogs (e.g. Günther, 1990). Alternatively, rare unreduced 2 n gametes of 2 n toads (e.g. Bogart, 1972) and their fusion with normal 2 n gametes of 4 ns (Stöck et al., 2002) may lead to hybrid meiotic 4 n offspring carrying nuclear and mitochondrial genes from the $2 n-V$ into the $4 n-I I$ gene pool. Stöck et al. (2005) found some 4 n -II karyotypes with one or three instead of two homologous Q-positive chromosomes 6, consistent with introgression of Q-positive chromosomes from the $2 \mathrm{n}-\mathrm{V}$ into the $4 \mathrm{n}-\mathrm{II}$ gene pool, possibly restricted to single unreduced eggs of $2 \mathrm{n}-\mathrm{V}$.

Similarly, all unequivocally 2 n -IV toads (B. turanensis) are at least four mutational steps apart from the closest 4 n I individuals (B. pewzowi), while rare triploids (3n-III from Northern Kyrgyzstan, loc. 92, 93) share the mtDNA with some 2 n -IV (or are only one mutational step apart, Fig. 4) and therefore might be F_{1} hybrids (2 n -IV female $\times 4 \mathrm{n}-\mathrm{I}$ male). Indeed, the pairwise $F_{S T}$ value (Table 3) found to be ~ 0.35 between $4 \mathrm{n}-\mathrm{I}$ and 2 n -IV or 3 n -III, was only 0.026 between 2 n -IV and 3 n -III, implying a separation of gene pools of $2 n-I V$ and $4 n$-I but almost no separation of $2 n-I V$ and 3 n -III within group A. Rare 3 n -III, which comprise $\sim 5 \%$ of some regional populations, may consist of males only (Borkin et al., 2001; pers. observation). Even if 3n hybrids are all-male or hypothetical 3 n females are sterile, mtDNA introgression might still result (as proposed for clade B) from single unreduced eggs of $2 n-I V$ females, which are fertilized by $4 n$ (or $3 n$) males and contribute to introgression of $2 n-I V$ mtDNA in the $4 n-I$ gene pool.

These intriguing questions of possible gene exchange and/or continuing reticulation between 2 n and 4 n toads in a system of "porous" gene pools in diverging taxa, which may occasionally exchange genetic material via rare triploids, require further analyses with rapidly evolving nuclear markers (e.g. microsatellites) from a close contact zone of 2 n and 4 n toads.

4.6.4. Distinctiveness of tetraploid toads from Bolshoi Balkhan (4n-III)

Distinctive d-loops in green toads from Bolshoi Balkhan (loc. 68) match the separate phylogeographic position of agamids (Macey et al., 1998a,b, 2000) from that island mountain, which also exhibits high plant endemism (Proskuriakova, 1971). This evidence supports a biogeographic
separation of Bolshoi Balkhan from Kopet Dagh and eastern Iran (Khorasan). Caspian Sea transgressions and temporary western drainage ("Uzboi") of the Amur-Darya kept the region isolated (Atamuradov, 1994). Nevertheless, the close mitochondrial relationship of 4 n -III to 3 n -IV toads (B. zugmayeri), a potentially second sexually reproducing triploid taxon from northern Baluchistan, is currently unexplained but suggests former range connections across the non-sampled southwest of Afghanistan.

4.6.5. Matrilineal origin of $3 n$ Bufo pseudoraddei in High Asia

Morphologically distinguishable B. pseudoraddei pseudoraddei (3n-I) and B. p. baturae (3n-II) share a common maternal ancestor, which is only distantly related to green toads ($2 \mathrm{n}, 3 \mathrm{n} 4 \mathrm{n}$) of the Central Asian clade (Fig. 3) and to geographically proximate B. latastii (2n-I). No living recent 2 n or 4 n maternal ancestor of the 3 n B. p. pseudoraddei and B. p. baturae is known. Although their mtDNA genotype also differs substantially from all other mitochondrial clades, this is not necessarily evidence for their great evolutionary age (see below).

4.6.6. Glaciation in Karakoram, Hindukush and western Himalayas caused speciation and late invasion of green toads

 We sampled B. p. pseudoraddei (3n-I) at two sites in the lower Kabul and Swat river drainages (Fig. 2: loc. 99, 100), and B. p. baturae (3n-II) in Hunza, Gilgit, and Chitral valleys (loc. 101-108). Both high mountain taxa split off in early Pleistocene (Table 1), suggesting that glaciation forced them into different refugia. Since both taxa are 3 n , triploidy might have evolved before their separation (1.61.3 Mya). Triploidy, however, may be younger than the monophyletic $3 n-\mathrm{I}+3 \mathrm{n}$-II mitochondrial lineage, if the mitochondrial lineage diverged and evolved earlier in an unknown 2 n ancestor.Current Himalaya and Transhimalaya (the Karakoram represents its western end) contain the highest non-polar concentration of glaciers. However, changing monsoon influence caused Quaternary glaciations to be dynamic and asynchronous to northern cycles. Pleistocene Hunza valley (Fig. 2: loc. 106-108) was so heavily glaciated (Owen et al., 2000a) that extant B. p. baturae (3n-II) could not have spent the ice age at its current sites ($2000-3000 \mathrm{~m}$ a.s.l.) but must have invaded from southern refugia. During the northern last glacial maximum (LGM), Himalayan glaciations were limited (Ref. in Benn and Owen, 2002). Indeed, Upper Hunza (loc. 106-108) first became ice free postglacially (Gulkin I stage) during the last glacial maximum (Owen et al., 2000a). Owen et al. (2000b) concluded that all of late Pleistocene Chitral (loc. 101, 102) was filled with a huge glacier system above 1300 m (Drosh stage), which would have made continued existence of $3 n-I I$ toads in Chitral impossible. Glaciation here (upper Mastuj valley: 102) lasted at least until early Holocene. The Shandur Pass (loc. 103; 3720 m a.s.l.) was icecovered as recently as middle or late Holocene (Owen et al., 2000b). Therefore, $3 n-I I$ toads must have crossed this pass
(loc. 103) later. Far downstream of Chitral, towards the other clade (3n-I: loc. 99, 100), modern climate is too hot for tem-perate-adapted green toads, and consequently genetically uniform 3n-II must have invaded Chitral (loc. 101, 102) from the East (loc. 105, 104), crossing Shandur (loc. 103). This implies a Pleistocene refugium of $3 n-$ II in the Himalayan Indus valley (S of loc. 105), which was ice-free south of $\sim 35^{\circ}$ N in late Pleistocene (Kamp and Haserodt, 2004). B. p. pseudoraddei (3n-I) from Paghman (loc. 99) and Swat (loc. 100), forming two subclades of $3 n-I$, supposedly reached these sites from southern refugia in the Kabul river drainage during Holocene warming and may no longer be in genetic contact. Their occurrence close (loc. 99) to the Salang Pass (3880 m , slightly above the maximum elevation of green toad records) in the Hindukush raises questions whether this lineage could surmount the range to the North and would then be found in northern Afghanistan and western Tajikistan. A range limit of B. p. baturae (3n-II) exists between their easternmost record (loc. 105) and the westernmost record (loc. 111) of B. latastii ($2 \mathrm{n}-\mathrm{I}$) in the rock gorge of the Indus river (Stöck et al., 2001b), where both taxa occur allopatrically. However, Baig (1998) reported sympatry of B. latastii and B. pseudoraddei (3n-I or 3n-II?) in the "Neelam (= Jhelum) valley" of Azad Kashmir (eastern Pakistan).

5. Conclusions: phylogenetic and evolutionary implications of polyploidy in the Bufo viridis subgroup

We have provided evidence for ancient splits of mitochondrial lineages at different time depths. Several clades meet each other geographically and their interactions, especially the extant of hybridization and/or polyploidization, offer appealing research opportunities. Our mtDNA analyses show that polyploidy in the B. viridis subgroup evolved several times. Cytogenetic data (Stöck et al., 2005) suggest at least two origins of 4ns (B. oblongus, 4n-I; B. pewzowi, 4n-II). Unique to the present data is the demonstration that the mitochondrial ancestor contributing to morphologically distinctive (Stöck et al., 1999, 2001a) triploid toads from Karakoram and Hindukush (B. p. pseudoraddei, 3n-I; B. p. baturae, $3 n-I I$) is different from the lineage leading to different groups of Central Asian tetraploids. This fascinating genomic diversity is further highlighted by the apparent discovery (further tests ongoing) of a new potentially sexually reproducing $3 n$ taxon (B. zugmayeri, 3n-IV) within the Central Asian clade and especially by the probable continuing interactions of parapatric diploid and tetraploid toads. In their contact zones, diploid, triploid and tetraploid genotypes interact (and likely co-evolve), and show that vertebrate evolution can not only tolerate but readily incur major changes in genome size and composition, which signals genomic plasticity. Given the relatively rare occurrence of polyploidy in Bufo (e.g. Tandy et al., 1985; King, 1990; Vences and Wake, in press), this also suggests that certain propertiesof the B. viridis genome may be especially suitable for the appearance of polyploidy, a hypothesis that deserves further investigation (e.g. by artificial polyploidization experiments). Bufo asmarae (Tandy
et al., 1982), a tetraploid species from the B. regularis group with $4 \mathrm{n}=40$ chromosomes, is an evolutionary parallel of possibly hybrid origin (Tandy et al., 1985) in which comparative research with molecular methods would be of great interest.

Multiple origins of polyploids in green toads may be the rule rather than the exception, as in several other polyploid vertebrate groups (see introduction; Cunha et al., 2004; Ptacek et al., 1994; Evans et al., 2004, 2005; Tsigenopoulos et al., 2002). The role of hybridization and reticulation in animal evolution is still debated and restricted by our currently limited access to genomes of non-model organisms. Easily observable quantitative differences in diploid/polyploid complexes make us aware of the fluidity and plasticity of genomes and this "view of the tip of the ice berg" could mean that introgression, fusion and hybridization are not only tolerable but may be a major component of animal evolution (cf. Morjan and Rieseberg, 2004; Mavárez et al., 2006; Patterson et al., 2006).

Acknowledgments

This work was supported by a research fellowship (Sto 493/1-1) from the Deutsche Forschungsgemeinschaft (DFG) to M. Stöck and the University of California, Berkeley (Craig Moritz and David Wake).

The following people helped with collecting and/or sending specimens or tissue samples: C. Andrén (Alvhem), M. Auer (Dresden), A. Basheeva (Karaganda), W. Böhme (Bonn), S. Bogaerts (Nijmegen), D. Buckley (Berkeley), M. Chirikova (Almaty), L. Choleva (Libechov), T. Dieterich (Astana), R. Dressel (Dresden), U. Fritz (Dresden), K. Fog (Vekso), F. Glaw (Munich), E. Gnidenko (Almaty), R. Günther (Berlin), W.-R. Grosse (Halle), C. Herden (Lauenburg), C. Klütsch (Bonn), L. Kratochvil (Prague), S. Kuzmin (Moscow), N. Lutzmann (Zurich), C. Miaud (Le Bourget du Lac), M. Ogielska (Wrozlaw), Zh. Oralov (Astana), J. Martens (Mainz), J.F. Parham (Berkeley), E. Recuero (Madrid), U. Scheidt (Erfurt), J.F. Schmidtler (Munich), H. Veith (Halle), J. Vörös (Budapest), S. Voitel (Eisleben), T. Woeltjes (The Netherlands). D.K. Lamatsch (Brussels) and C. Steinlein (Würzburg) helped with ploidy determination by flow cytometry. M. Stöck is grateful for references or information from B. Clarke (London), A. Ohler (Paris), J. Pramuk (Provo), C. Muster (Leipzig), L. Owen (Cincinnati), E. Roitberg (Rostock), Y.L. Werner (Jerusalem); for references and discussion on fossil B. viridis: M. Böhme (Munich); for correspondence on Mediterranean paleogeography: F. Rögl (Vienna); for veterinary services: F. Mutschmann (Berlin), and for discussion, the choice of the mitochondrial marker and various support: M. Schartl (Würzburg). M. Stöck wishes to thank many colleagues in the MVZ (Berkeley) who helped with some methodological approaches, especially N.M. Belfiore, B. Slikas, R. Bingham, M. Brandley, C. Conroy, T. Devitt, M. Fujita, J. Kapoor, A. Leaché, J.B. MacKenzie, I. Martínez-Solano and J. McGuire. R. Hijmans provided valuable cartographic support.

Appendix A

Map	Voucher (if available)	GenBank Acc. No.	Taxon	Locality	Ploidy	N	Sample-ID (see Figs. 3 and 4)	LAT	LONG	ELEVATI ON (if known)
1	-	DQ629730	B. boulengeri	Morocco, AitBaha, E. Recuero leg.	2n	1	371	30.130	-9.080	
2	MTD45286	DQ629718	B. boulengeri	Morocco, High Atlas, D. Frynta leg.	2 n	1	112	32.427	-5.156	
3	CUP \backslash AMPH \backslash MOR $\backslash 01$	DQ629704	B. boulengeri	Morocco, High Atlas, D. Frynta leg.	2 n	1	179	33.427	-5.150	1438
4	ZFMK 37856	-	B. balearicus	Spain,Balearic islands, Mallorca, Caps Andraixs, C.A.Raehmel leg. 1982	2 n	1	160	39.500	3.000	
5	ZFMK49652	DQ629720	B. boulengeri	Algeria, Ghardaia, W. Bischoff, U. Joger leg.	2 n	1	163	32.483	3.667	
6	MVZ 235680	DQ629721, DQ629602	B. boulengeri	Tunisia, Nefta oasis, Tawzar (= T0zeur) Governorate, T. Papenfuss 6 Feb 2002 leg.	2 n	1	166	33.917	3.133	45
7	ZSM 6/2004	DQ629731, DQ629598	B. balearicus	France, S-Corsica, near Bonifacio, 19 June 2002, F. Glaw, K. Schmidt. leg.	2 n	1	175	41.383	9.150	
8	-	DQ629645	B. variabilis	Germany, Schleswig-Holstein, Woltersdorf near Lübeck, C. Herden leg.	2 n	1	310	53.583	10.633	
9	ZFMK 14704	DQ629719	B. boulengeri	Tunesia, Djerba island, Kiehlmann leg. 1974	2 n	1	165	33.800	10.900	
10	ZSM 5/2004	DQ629671	Natural cross B. calamita male $\mathrm{x} B$. viridis female	Germany, Fürstenfeldbruck, E. Andrä leg.	2 n	1	Hyb-IV	48.180	11.250	
11	-	DQ629670	B. variabilis	Denmark, NW Lolland, K. Fog leg.	2 n	1	296	54.900	11.250	
12	MVZ 247648 (tissue)	DQ629632	B. variabilis	Denmark, Falster, a few km S Nykøbing Falster, K. Fog leg.	2 n	1	295	54.750	11.800	
13	-	DQ629687	B. viridis	Italy, Padua, University of Würzburg 1995 leg.	2 n	1	21	45.417	11.883	
14	MVZ 241555	DQ629674	B. viridis	Germany, Halle (Saale), Martin-LutherUniversity Halle-Wittenberg, Botanical Garden, W. Grosse and M. Stöck leg.	2 n	1	171	51.833	12.000	
15	NME 974/02	DQ629672, DQ629673	B. viridis	Germany, Thuringia, Falkenhain, opencast, mining "Phönix Nord" leg. A. Nöllert	2 n	2	190, 191	51.417	12.883	
16	MVZ 244350, 244354, 244355 (tadpoles)	$\begin{aligned} & \text { DQ629659, } \\ & \text { DQ629662, } \\ & \text { DQ629663, } \\ & \text { DQ629664, } \\ & \text { DQ629665, DQ629666 } \end{aligned}$	B. variabilis	Sweden, Malmö, Limhamn, C. Andren leg.	2 n	7	241, 242, 266	55.583	12.900	
17	-	DQ629717	B. boulengeri	Libya, Al' Fiayi, Sabah Province, D. Frynta leg.	2 n	1	140	26.533	13.317	
18	-	DQ629705, DQ629706, DQ629707	B. boulengeri	Libya, Gabroon Lake, D. Frynta leg.	2 n	2	139, 107, 114	26.800	13.533	
19	-	$\begin{aligned} & \text { DQ629726, } \\ & \text { DQ629727, } \\ & \text { DQ629728, } \\ & \text { DQ629729, DQ629608 } \end{aligned}$	Unnamed	Italy, Sicily, E of Lentini, near mouth of San Leonardo River, 500 m from coast inland	2 n	4	323, 324, 325, 326	37.333	15.067	
20	NME 912/01	DQ629732	B. balearicus	Italy, Sicily, N Francavilla di Sicilia, stream valley, T. Zavianni, A. Nöllert leg.. 16 April 1995	2 n	1	188	37.900	15.133	
21	NME 913/01	DQ629733	B. balearicus	Italy, W coast, Calabria, Paola, A. Nöllert leg., 17 April 1995	2 n	1	189	39.350	16.033	
22	ZFMK 65102	DQ629661	B. viridis	Austria, moutainous country above Eisenstadt	2 n	1	144	47.850	16.516	
(continued on next page)										

Map	Voucher (if available)	GenBank Acc. No.	Taxon	Locality	Ploidy	N	Sample-ID (see Figs. 3 and 4)	LAT	LONG	ELEVATI ON (if known)
23	MVZ 164718	DQ629686, DQ629606	B. viridis	Austria, MVZ frozen tissue collection (FC 13312), 3.2 km E Podersdorf Buraenland, Austria: R. D. Sage leg.	2n	1	168	47.850	16.833	
24	HNHM2004.94.2	DQ629678	B. viridis	Hungary, Central Hungary, Orgovany, May 2004, L. Forro leg.	2 n	1	265	46.750	19.467	
25	ZFMK 62479	DQ629722	B. variabilis	Greece, Epirus, S Igoumenitsa, Patraia, W. Böhme leg. 1996	2n	1	149	39.500	20.266	
26	MTD 45036,45281	$\begin{aligned} & \text { DQ629710, } \\ & \text { DQ629711, DQ629712 } \end{aligned}$	B. boulengeri	Libya, Shahhat (Ancient Cyrene), Binghazi Province, D. Frynta leg.	2 n	3	109, 131, 138	32.817	21.867	
27	-	DQ629630	B. variabilis	Greece, Peloponnes, J. Plötner leg.	2n	1	99	37.516	22.367	
28	NME 901/01	DQ629675	B. viridis	Greece, Peloponnes, Kióna, E-Bank Stymphalian Lake, leg. A. Nöllert, 10 April 1996	2 n	1	187	37.850	22.450	
29	NME 900/01	DQ629654	B. viridis		2n	1	186	38.133	23.000	
30	NME A 1037/03 (2nd +3 rd indivi	DQ629655, DQ629656	B. viridis	Greece, Crete, Omalos, U. Scheidt leg.	2n		133, 134	35.333	23.900	
31	-	DQ629657, DQ629658	B. viridis	Greece, Crete, Aradena village, 19 April 2003, leg. U. Scheidt	2 n	2	135,136	35.200	24.083	
32	MTD 45275,45276	DQ629667, DQ629668	B. viridis	Greece, Crete, via J. Plötner	2n	2	100, 101	35.417	24.750	
33	MTD 45280, 45282	DQ629714, DQ629715	B. boulengeri	Egypt, Matrouh, via E. J. Bentley	2 n	2	108, 110	30.000	28.000	
34	MVZ 230206, 230207	DQ629621, DQ629624	B. variabilis	Turkey, Cicekli Köyü, 7 km E (by road) Ula Mugla Prov., T. Papenfuss leg.	2n	2	236, 237	37.066	28.500	
35	ZFMK 77600, 77601	DQ629708, DQ629709	B. boulengeri	Egypt, Oasis Dakhla (Dakhilah, Al Wahat ad), N. Lutzmann leg.	2 n	2	146, 147	25.553	28.948	
36	MVZ 230208	DQ629623, DQ629600	B. variabilis	Turkey, Osman Gazi, Bursa, Bursa Prov., T. Papenfuss leg.			238	40.167	29.083	
37	MTD 45277	DQ629713	B. boulengeri	Egypt, 70 km S Alexandria, via J. Bentley	2 n	1	105	31.000	30.000	
38	MTD42716,42717	DQ629684, DQ629685	B. viridis	Ukraina, Cherson Oblast, Golija Pristan, U. Fritz leg.	2 n	2	184, 185	46.516	30.516	
39	ZFMK 50909	DQ629716	B. boulengeri	Egypt, Alexandria, El Menoufia (via U. Sinsch), 1989	2n	1	159	30.500	31.000	
40	CS96V:4	DQ629625	B. variabilis	Turkey, Central Turkey, S. Doganhisar, Prov. Konya, 1650 m, 31 May 1996, Central Turkev. J.F Schmidtler leg.	2n	1	253	38.150	31.683	
41	CS73V:1	DQ629636	B. variabilis	Greece, Cyprus, Lefka, 16 April 1973, J.F. Schmidtler leg.	2n	1	259	35.117	32.850	
42	CS98V:1	DQ629651		Turkey, Tepeköy, NW Mersin, 5 April 1998, J F. Schmidtler leg.	2 n	1	257	36.217	33.566	1250
43	MVZ 247506 (tissue)	DQ629648	B. variabilis	Turkey, Kizakalesi Korykos, Kizkalesi, Silifke 19 July 2004, L. Choleva leg.	2 n	2	289	36.360	33.930	
44	CS96V:1	DQ629626	B. variabilis	Turkey, Limonlu, 50 km W Mersin, $300 \mathrm{~m} ; 9$ April 1996, J.F. Schmidtler leg.	2 n	1	250	36.566	34.250	
45	CS96V 3	DQ629627	B. variabilis	Turkey,Güzelyurt, Pr. Akhisar, 1550 m; 29 May 1996, J F. Schmidtler leg.	2 n	1	252	38.283	34.383	
46	NME A 1039/03	DQ629724	B. variabilis	Syria, Doura Europus, D. Frynta leg.	2 n	1	111	33.483	36.000	

47	ZFMK 60946	DQ629726	B. variabilis
48	$\begin{aligned} & \text { ZMB 58540, 58541, } \\ & 58542 \end{aligned}$	$\begin{aligned} & \text { DQ629679, } \\ & \text { DQ629680, DQ629681 } \end{aligned}$	B. viridis
49	ZMB 57384	DQ629682	B. viridis
50	MVZ 218679	DQ629669	B. viridis
51	ZMB 64802, 64803	DQ629676, DQ629677	B. viridis
52	ZMB 58562	DQ629683	B. viridis
53	ZFMK 57912	-	B. variabilis
54	MVZ 247493, 247505 (tissue), 247495-247503 (tadpoles)	$\begin{aligned} & \text { DQ629631, } \\ & \text { DQ629633, DQ629649 } \end{aligned}$	B. variabilis
55	MVZ 244345, 244346	DQ629628, DQ629629	B. variabilis
56	MVZ 247494, 24704 (tissue)	$\begin{aligned} & \text { DQ629634, } \\ & \text { DQ629635, DQ629650 } \end{aligned}$	B. variabilis
57	-	DQ629701	B. variabilis
58	-	DQ629698	B. viridis
59	CAS 182891	DQ629653	B. variabilis
60	MTD 45284	DQ629622	B. variabilis
61	-	DQ629637, DQ629642	B. variabilis
62	-	DQ629639	B. variabilis
63	-	DQ629640	B. variabilis
64	NME A 1038/03	DQ629723	B. variabilis
65	MTKDD 43943	$\begin{aligned} & \text { DQ629614, } \\ & \text { DQ629615, } \\ & \text { DQ629616, DQ629610 } \end{aligned}$	B. luristanicus
66	-	DQ629638	B. variabilis
67	-	DQ629641	B. variabilis
68	-	DQ629768, DQ629769	Unnamed

Libanon, Libanon mountains, abo
2n
153
$34.250 \quad 36.016 \quad 2300$
Bcharre, Cedrus forest, 2300 m a.s.I.,
Bischoff. J.F., H. Schmidtler. in den Bosch
leg.

Russia, NW Caucasus, Dzhemete near	2 n	3	204, 205, 206	44.947	37.306	
Anapa, T. Kirschey leg.						
Russia, NW of Caucacasus, Suko near	2 n	1	203	44.883	37.317	
Anapa T.Kirschev leg.						
Tula region, Tula oblast, Russia, leg.	2 n	1	271	54.117	37.367	
Russia, Abrau Peninsula, NW Caucasus, T. Kirschey leg.	2 n	2	211,212	44.697	37.596	
Russia, NW Caucasus, Goverdovski near Maikop, T. Kirschey leg.	2 n	1	209	44.608	40.106	
Syria, Dayr az Zawr, Hotel Al Waha, left Euphrat bank 1994, W, Bischoff leg.	2 n	1	157	35.333	40.150	
Turkey, Nemrut Dagh and E of Nemrut, L. Choleva leg.	2 n	3	281, 284, 288	38.660	42.300	
Russia, Caucasus, Terskol, L. Choleva leg.	2 n	2	261,262	43.257	42.527	
Turkey, Karahan-Kars lli, Van Golu (N), Karahan Koyu, 4 July 2004, L. Choleva leg.	2 n	3	282, 286, 287	39.000	43.760	
Iran, Kara Kelisa or Kare Kilise villiage, Urda, E. Gnidenko leg.	2 n	1	95	38.950	44.467	
Kazakhstan, Beket-Ordinsky Rayon, village Urda, E. Gnidenko leg.	2 n	1	337	48.770	47.434	
Russia, Dagestan Autonomous Republic, Sary Kum Sand Dunes, at Kumtorkala Railroad Station, T. Papenfuss/R. Macey leg.	2 n	1	202	42.967	47.500	
Iran, Choqa Zanbil, Elamite zikkurat, Khuzestan province, D. Frynta leg.	2 n	1	115	32.014	48.529	45
Kazakhstan, Djangalinsky Rayon, village Djangala, E. Gnidenko leg.	2 n	1	340, 341	49.213	50.307	
Kazakhstan, Akjainskiy rayon, Kalmykovo, E. Gnidenko leg.	2 n	1	335	49.031	51.825	
Kazakhstan, Syrymski Rayon, village Djambeity, E. Gnidenko leg.	2 n	1	338	50.254	52.605	
Iran, Central; Iran, Qasr-e-Sásán, D. Frynta leg. 2000	2 n	1	113	29.195	53.231	
Iran, Posht Chenar, D. Frynta leg.	2 n	3	58, 176, 177	29.200	53.333	1690
Kazakhstan, W 80 km E of Uralsk city, Berezka river, M. Chirikova leg.	2 n	1	334	51.000	53.354	
Kazakhstan, Karatobinsky Rayon, village Karatobe, E. Gnidenko leg.	2 n	1	339	49.692	53.549	
Turkmenistan, Bolshoi Balkhan, M. Stöck	4 n	2	5.9	39.717	54.483	500

Appendix A (continued)

Map	Voucher (if available)	GenBank Acc. No.	Taxon	Locality	Ploidy	N	Sample-ID (see Figs. 3 and 4)	LAT	LONG	ELEVATI ON (if known)
69	-	DQ629690	B. cf. turanensis	Iran, NE,N-slope Elburz-Range, near Gorgan, M.Stöck 1994 leg.	2n	1	33	37.000	54.500	
70	-	$\begin{aligned} & \text { DQ629690, } \\ & \text { DQ629688, DQ629689 } \end{aligned}$	B. cf. turanensis	Iran, NE, 50 km NE Gonbad-e-Kavus, M. Stöke leg.	2 n	1	6.77	37.633	55.483	250
71	MVZ 249177, 249178	$\begin{aligned} & \text { DQ629691, } \\ & \text { DQ629692, } \\ & \text { DQ629693, } \\ & \text { DQ629694, DQ629695 } \end{aligned}$	B. cf. turanensis	Iran, Marrave Tappe, Mazandaran province, Westernmost foothills ofKopet Dagh, D. Frynta leg.	2 n	5	90-94	37.733	55.901	665
72	MVZ 245917, CAS 228604	$\begin{aligned} & \text { DQ629702, } \\ & \text { DQ629703, DQ629605 } \end{aligned}$	B. cf. turanensis	Iran, Delbar Field Station, Touran Protected Area, T Papenfuss, O. Mozafari, H. Fahimi,S. Shafiei, K. Kamali 2005 leg.	2 n	2	216,217	35.967	56.068	1196
73	MTD 39400, 39401	DQ629766, DQ629767	B. oblongus danatensis	Turkmenistan, Danata, M. Stöck 1994 leg.	4 n	2	12, 13	38.617	56.633	
74	MTD 40730,40731	DQ629619, DQ629620	B. viridis kermanensis	Iran, Kerman, southern Central Iran, M. Stöck 1998 leg.	2 n	2	43, 44	30.300	57.083	1860
75	CAS 228820-228823, MVZ 245911-245914	DQ629744, DQ629745, DQ629746, DQ629747, DQ629748, DQ629749, DQ629750	B. oblongus	Iran, Kharve, 23 km N Tabas, Yazd Prov., T. Papenfuss 2005 leg.	4 n	7	228 to 234	33.641	57.162	
76	-	DQ629696	B. turanensis	Iran, Bik, Central Kopet Dagh, Khorasan province, D. Frynta leg.	2n	1	87	37.606	57.944	1467
77	MTD 44397	DQ629699	B. turanensis	Turkmenistan, Ashgabad, M. Stöck, A. Bischoff, K. Holländer 1994 leg.	2n	1	29	37.950	58.383	
78	MTKDD41347	DQ629778, DQ629779	B. oblongus	Iran, Birjand M. Stöck 1998 leg.	4 n	2	45, 46	32.550	59.167	1500
79	CAS 228604, 228690 228694, 228699, MVZ 245904-24907	DQ629734, DQ629735, DQ629736, DQ629737, DQ629738, DQ629739, DQ629740, DQ629741, DQ629742, DQ629743	B. oblongus	Iran, Khorasan Province, Bande-dare Spring(Dam), $\sim 4 \mathrm{~km}$ (by. road) S of Jaanbaazaan Square, Birjand, J.F. Parham, T. Papenfuss, O. Mozafari, H. Fahimi,S. Shafiei leg. 2005	4 n	10	218-227	32.822	59.218	1655
80	$\begin{aligned} & \text { MVZ 248372, } \\ & \text { 248373(tissue) } \end{aligned}$	DQ629646, DQ629647	B. variabilis	Kazakhstan, Aral Sea, NW coast of Shevchenko Gulf, T.Duisebaveva leg.	2 n ?	2	305, 306	46.578	59.925	55
81	-	DQ629700	B. turanensis	Iran, Bazangan, Khorasan province, D. Frynta leg.	2 n ? 2 n	1	104	36.280	60.548	750
82	$\begin{aligned} & \text { MVZ 241548, } 1241549 \text {, } \\ & 248374 \end{aligned}$	$\begin{aligned} & \text { DQ629751, } \\ & \text { DQ629752, } \\ & \text { DQ629753, DQ629601 } \end{aligned}$	B. oblongus	Iran, Bazangan, Khorasan province, D. Frynta leg.	4 n	3	96, 97, 98	36.280	60.548	750
83	$\begin{aligned} & \text { MTD } 39405,39406 \text {, } \\ & 40010 \end{aligned}$	$\begin{aligned} & \text { DQ629763, } \\ & \text { DQ629764, DQ629765 } \end{aligned}$	B. pewzowi	Uzbekistan, Nuratau range, M. Stöck 1996 leg.	$4 n$	4	15,16, 17	40.583	36.500	900-1600
84	$\begin{aligned} & \text { MVZ 250382-250385, } \\ & 250779 \end{aligned}$	$\begin{aligned} & \text { DQ629770, } \\ & \text { DQ629771, } \\ & \text { DQ629772, } \\ & \text { DQ629773, } \\ & \text { DQ629774, } \end{aligned}$	B. zugmayeri	Pakistan, Pishin, T. Papenfuss leg. April 2005	$3 n$	3	$\begin{aligned} & 343,344,345,346, \\ & 347,348,349,350 \end{aligned}$	30.580	67.000	

85	MVZ	DQ629776, DQ629777	B cf turanensis
85	$248370 \text { (tissue),248371 }$ (juv.)	DQ629791, DQ629792	B. cr. turanensis
86	MVZ 249171, 249172	DQ629801, DQ629802	B. viridis
87	ZMB 60364	DQ629652	B. cf. variabilis
88	MVZ 249170	DQ629800	Supposed hybrid B. variabilislturanensis
89	MVZ 249168, 249169	DQ629643, DQ629644	B. cf. variabilis
90	MVZ 249173	DQ629697	B. viridis
91	-	DQ629780	B. turanensis
92	MVZ 249163, 259164	DQ629812, DQ629813	Supposed hybrids B. pewzowilB. turanensis
93	-	DQ629814	Supposed hybrid B. pewzowilB. turanensis
94	MVZ 249174	DQ629809	B. pewzowi
95	-	DQ629810, DQ629811	B. pewzowi
96	-	DQ629807, DQ629808	B. turanensis
97	MTD 40012	DQ629783, DQ629784	B. pewzowi
98	MVZ 249159-249162	DQ629803, DQ629804, DQ629805, DQ629806	B. pewzowi
99	MVZ 237418, 237419	DQ629846, DQ629847	B. pseudoraddei
100	$\begin{aligned} & \text { ZSM 106/1998, MTD } \\ & 44393 \end{aligned}$	$\begin{aligned} & \text { DQ629843, } \\ & \text { DQ629844, DQ629845 } \end{aligned}$	B. pseudoraddei pseudoraddei
101	MVZ 241553	DQ629815, DQ629816	B. pseudoraddei baturae
102	-	$\begin{aligned} & \text { DQ629837, } \\ & \text { DQ629838, DQ629839 } \end{aligned}$	B. pseudoraddei baturae
103	MVZ 241554	DQ629817	B. pseudoraddei baturae B. pseudoraddei

Kazakhstan, environs of Taldy-Say village, T.Dujsebayeva leg.	2 n ?	2	303, 304	48.224	67.052	504
Kazakhstan, 40 km NW of Kyzyldzhar, M. Stöck leg. 23 May 2005	2 n	2	303, 304	48.542	69.283	504
Kazakhstan, Tengiz Lake, 12 km W of Abaya village. T. Dieterich	2 n	1	143	50.667	69.667	
Kazakhstan, 45 km S of Kurgaldhinskiy, Kulanulpes-River, M. Stöck leg. 22 May 2005	2 n	1	353	50.242	70.000	
Kazakhstan, SW of Astana, M. Stöck leg. 22 May 2005	2 n	1	351, 352	51.125	71.267	
Kazakhstan, Karaganda, N of railway near city center, M. Stöck leg. 24 May 2005	2 n	1	356	49.792	73.092	
Kyrgyzstan, Bishkek, Botan. Garden, M. Stöck 1993 leg.	2n	1	14	42.900	74.600	
Kyrgyzstan, S of Bishkek, loc. Point 4, M. Stöck leg. 15 May 2005	$3 n$	2	365, 366	42.690	74.630	
Kyrgyzstan, S of Bishkek, loc. Point 6, M. Stöck leg. 15 May 2005	$3 n$	1	367	42.720	74.660	
Kyrgyzstan, S of Bishkek, loc. Point 1,M. Stöck leg. 15 May 2005	2 n	1	362	42.780	74.660	
Kyrgyzstan, S of Bishkek, loc. Point 3, M. Stöck leg. 15 May 2005	2 n	2	363, 364	42.790	74.760	
Kyrgyzstan, N of Bishkek, Ala-Archinskoye Vodochranilishche, M. Stöck leg. 18 May 2005	2 n	2	368, 369	43300	75000	
Kyrgyzstan, Issyk-Kul, M. Stöck leg. 1995	4 n	2	10, 11	42.467	76.200	
Kazakhstan, Almaty, entrance Gorki park, M. Stöck leg. 27 May 2005	4 n	4	357, 358, 359, 360	43.250	76.956	
Afghanistan, Kabul Prov., stream ca. 4 km above Paghman, T. Papenfuss leg.	$3 n$	2	297, 298	34.610	68.920	2608
Pakistan, Swat-Valley, Kulalai, WHimalaya, Pakistan, M. Stöck, M. Möller leg. 1996	$3 n$	7	24, 125, 137	35.317	72.600	1750
Pakistan, Chitral, Hinkukush, NW-Frontier Prov., M. Stöck, R. Dressel leg.	3n	11	71, 72	35.883	71.783	1480
Pakistan, NW-Frontier Prov., Booni, M. Stöck, R. Dressel 2000 leg.	$3 n$	3	B1, 2, 3	36.333	72.333	1900
Pakistan, Shandur-Pass, Hindukush, NWFrontier Prov., M. Stöck, R. Dressel 2000 leg.	$3 n$	8	73	36.066	72.517	3720

App	A (continued)									
Map	Voucher (if available)	GenBank Acc. No.	Taxon	Locality	Ploidy	N	Sample-ID (see Figs. 3 and 4)	LAT	LONG	ELEVATI ON (if known)
104	-	DQ629818, DQ629819	B. pseudoraddei baturae	Pakistan, Gupis, Karakoram, Northern Areas Prov., M. Stöck, R. Dressel 2000 leg.	3 n	7	60, 61	36.233	73.450	2160
105	ZSM 111/1998, 112/1998	DQ629820, DQ629821, DQ629822, DQ629823, DQ629825, DQ629826, DQ629827	B. pseudoraddei baturae	Pakistan, Gilgit, Karakoram, Northern Areas Prov., M. Stöck, R. Dressel 2000 leg.	3 n	8	$\begin{aligned} & 32,35-37,48-50, \\ & 74 \end{aligned}$	35.900	74.400	1550
106	-	DQ629842	B. pseudoraddei baturae	Pakistan, Northern Areas, Hunza-Valley, river bank, Karimabad near Ganesh, M. Stöck, R. Dressel 2000 leg.	$3 n$	8	130	36.300	74.683	2060
107	$\begin{aligned} & \text { MVZ 241552, ZMB } \\ & 58769 \end{aligned}$	DQ629828, DQ629829, DQ629830, DQ629831, DQ629832, DQ629833, DQ629834, DQ629835, DQ629836, DQ629604	B. pseudoraddei baturae	Pakistan, Pasu, Karakoram, Northern Areas Prov., M. Stöck, H. Veith,R. Dressel 1997 and 2000 leg.	3 n	59	$\begin{aligned} & 39,40,41,62,65- \\ & 68,117 \end{aligned}$	36.500	74.867	2700
108	$\begin{aligned} & \text { ZSM 101/1998, ZSM } \\ & \text { 102/1998 } \end{aligned}$	DQ629840, DQ629841	B. pseudoraddei baturae	Pakistan, Sust, Karakoram, Northern Areas Prov., M. Stöck, M. Möllerleg.	$3 n$	2	27, 28	36.767	74.833	2950
109	ZSM 110/1998, CAS 197007-197010	DQ629756, DQ629757, DQ629758, DQ629759, DQ629760, DQ629603	B. pewzowi taxkorensis	China, NW-China, Taxkurgan, E-Pamir, M. Stöck, T. Papenfuss, J.R. Macey leg.	4 n	5	25, 193-196	37.783	75.233	3350
110	ZSM 107/1998, 108/1998	DQ629781, DQ629782	B. pewzowi	China, Kashgar, Xinjiang, China, M. Stöck 1996 leg.	4 n	2	22,23	39.483	76.033	1350
111	ZMB 62722, ZMB 62723	DQ629848, DQ629849, DQ629850, DQ629851, DQ629852, DQ629853, DQ629855, DQ629856, DQ629857, DQ629858, DQ629859, DQ629860, DQ629861,DQ629862, DQ629863, DQ629599	B. latastii	Pakistan, Northern Areas (Baltistan), Himalaya, Satpara river and Satpara lake SW of Skardu, M. Stöck, R. Dressel 2000 leg.	2 n	12	$\begin{aligned} & 78,79,81,127, \\ & 128,164 \end{aligned}$	35.283	75.617	2300
112	-	DQ629796	B. pewzowi	Kazakhstan, SE, near Kokpak, M. Chirikova leg.	4 n	1	328	42.810	79.872	1843

113	-	DQ629795, DQ629797	B. pewzowi
114	-	DQ629799	B. pewzowi
115	CAS 171493	DQ629786	B. pewzowi
116	-	DQ629798	B. pewzowi
117	ZSM 109	DQ629785	B. pewzowi
118	-	DQ629789	B. pewzowi
119	-	DQ629790	B. pewzowi
120	-	DQ629794	B. pewzowi
121	-	DQ629793	B. pewzowi
122	CAS167832, 167834	DQ629761, DQ629788	B. pewzowi
123	CAS171676	DQ629787	B. pewzowi
124	CAS171053	DQ629762	B. pewzowi

Laboratory crosses and outgroup taxa
-

DQ629762
B. pewzowi

DQ629754

DQ629755

DQ629854
Laboratory cross

Kazakhstan, SE, Shalkudysu river, M
Kazakhstan, E Tarbagatai Tebiske river, M. 4
$4 \mathrm{n} \quad 1 \quad 199$
China Xinjiang Uygur Auto. Regionálli

Kazak Auto. Prefecture Tacheng Dist.,
along Liu Su stream at Liu Su Gou, 29 km E
of Miao'ergou Autonomous Region, B.
Macey, T. Papenfuss leg.
Kazakhstan, E. Akzhar village, M. 4n 332
Chirikova leg.
China, E-Tien-Shan, NW-China, Xinjiang, 4n 1
M. Stöck 1996 leg.

Kazakhstan, S-Bukombay Mountains,
$4 \mathrm{n} \quad 1 \quad 300$
(northern boundary of Zaissan Depression),
T. Dujsebayeva leg.

Kazakhstan, S foothills of Altai range,
4n
Prirechnoye village, T. Dujsebajeva leg.
Kazakhstan, Altai range, environs of
Terekti (formerly Alexeevka) village. T.
Duisebaieva leg.
Kazakhstan, Altai, Pakhmanovskiye
$\begin{array}{lll}4 n & 1 & 307\end{array}$
307
lyuchi N boundaries of S Altay range. T
Dujsebayeva leg.
China, Xinjiang Uygur Autonomous
Region, Bayingolin Mongol Macey, T.
Papenfuss leg. 1988
China, Xinjiang Uygur Auto. Region
Changji Hui Auto. Prefecture, canyon above
Dayou, 8.1 km S of Dayou, Tien Mountain,
R. Macey and T.J. Papenfuss leg. 1988

China, Xinjiang Uygur Autonomous 4n
Region, sand dunes, Hami-Barkol Kazak Autonomous County (town), J.R. Macey, T. Papenfuss leg.

Mother: B. pewzowi, Kyrgyzstan, 1ssyk-Kul $3 \mathrm{n}!\quad 1 \quad 19 \mathrm{C}$
$4 n=44$), father: B. cf. oblongus,
Turkmenistan. Bolshoi Balkhan ($4 \mathrm{n}=44$)
Mother: B. pewzowi, Kyrgyzstan, Issyk-Kul 4n 1 20C
$(4 n=44)$, father: B. oblongus,
Turkmenistan, Danata ($4 n=44$)
Mother: B. latastii, Pakistan, Skardu 3n 1 Cr243
$(2 n=22) \times$ father B. pseudoraddei baturae,
Pakistan. Karakoram. Pasu ($3 n=33$)
Spain, Cadiz Prov., Andalusia, 3.1 km S
$2 n$
Benalup de Sidonia on road to Veier de La
Frontera, J.A. Visnaw leg.
$49.550 \quad 86.516$
Appendix A (continued)

Map	Voucher (if available)	GenBank Acc. No.	Taxon	Locality	Ploidy	N	Sample-ID (see Figs. 3 and 4)	LAT	LONG	ELEVATI ON (if known)
	-	AJ584640	B. melanostictus	unknown, not provided by GenBank	2 n	1	-			
	-	DQ629595, DQ629609	B. regularis	Egypt, Embaba, Giza, Abdul Karim leg.	2 n	1	312	30.020	31.216	
	MVZ 241541	DQ629593, DQ629597	B. brongersmai	Morocco, close to type locality, details unknown	2 n	1	172	-	-	
	MVZ 177905	DQ629612	B. bufo	Morocco, Marrakesh Prov., Oukaimeden, Stephen D. Busack, J. A. Visnaw	2 n	1	177905	31.206	-7.864	2650
	MTD 45287	DQ629613	B. raddei	China Xinjiang, Kuku-Nor, J. Martens leg.	2 n	1	116	37.000	100.333	
	MTD 44399	DQ629596	B. stomaticus	Pakistan, Mingorah, Swat valley, M. Stöck 1996 leg.	2 n	1	30	34.783	72.367	
	MTD 45290	DQ629592	B. arabicus	Yemen Sara'a (road to Sada'a); C. Naumann, C. Klütsch leg.	2 n	1	85	17.083	43.500	
	-	DQ629594	B. mauritanicus	Morocco, Sahrij, E. Recuero 2005 leg.	2n	1	370	31.794	-7.050	
	MTD 43944	DQ629618, DQ629611	B. surdus	Iran, Baluchestan, Deh Barez, D. Frynta leg.	2 n	1	59	27.450	57.317	350

References

Alves, J.M., Coelho, M.M., Collares-Pereira, M.J., 2001. Evolution in action through hybridization in an Iberian freshwater fish: a genetic review. Genetica 111, 375-385.
Arbogast, B.S., Edwards, S.V., Wakeley, J., Beerli, P., Slowinski, J.B., 2002. Estimating divergence times from molecular data on phylogenetic and population genetic timescales. Annu. Rev. Ecol. Syst. 33, 707-740.
Atamuradov, K.I., 1994. Paleogeography of Turkmenistan, in Biogeography and Ecology of Turkmenistan. In: Fet, V., Atamuradov, K.I. (Eds.), Kluwer Academic Publishers, Dordrecht, Boston, London, pp. 49-64.
Aubekerov, B., Gorbunov, A., 1999. Quaternary permafrost and mountain glaciation in Kazakhstan. Permafrost Perglacial Processes 10, 65-80.
Baig, K.J., 1998. The Amphibian Fauna of Azad Jammu and Kashmir with new record of Paa liebigii. Proc. Pakistan Acad. Sci. 35 (2), 117-121.
Bailon, S., 2000. Amphibiens et reptiles du Pliocene terminal d'Ahl al Oughlam (Casablanca, Maroc). Geodiversitas 22 (4), 539-558.
Balletto, E., Cherchi, M.A., Gasperetti, J., 1985. Amphibians of the Arabian peninsula. Fauna Saudi Arabia 7, 318-392.
Benn, D.I., Owen, L.A., 2002. Himalayan glacial sedimentary environments: a framework for reconstructing and dating the former extent of glaciers in high mountains. Quatern. Int. (97/98), 3-25.
Beukeboom, L.W., Vrijenhoek, R.C., 1998. Evolutionary genetics and sperm dependent parthenogenesis. J. Evol. Biol. 11, 755-782.
Blair, W.F. (Ed.), 1972. Evolution in the genus Bufo. University Texas Press, Austin, London, pp. 1-459.
Bogaerts, S., 2001. Breeding Brongersma's toad, Bufo brongersmai. Podarcis $2(3), 81-88$.
Bogart, J.P., 1972. Karyotypes. In: Blair, W.F. (Ed.), Evolution in the genus Bufo. Univ. Texas Press Austin, London, pp. 171-232.
Bogart, J.P., 1980. Evolutionary significance of polyploidy in amphibians and reptiles. In: Lewis, W.H. (Ed.), Polyploidy, biological relevance. Basic Life Sciences, 46. Plenum Press, New York, London, pp. 341-378.
Bogart, J.P., 2003. Genetics and systematics of hybrid species. In: Sever, D.M. (Ed.) (vol. 1 of the series: Jamieson, B.G.M. (Ed.), Reproductive biology and phylogeny), Reproductive biology and phylogeny of Urodela. Sci. Publ. Enfield (USA), Plymouth (UK), pp. 109-134.
Bogart, J.P., Klemens, M.W., 1997. Hybrids and genetic interactions of mole salamanders (Ambystoma jeffersonianum and A. laterale) (Amphibia: Caudata) in New York and New England. Am. Mus. Novit. 3, 1-78. (Am. Mus. Nat. Hist. New York).
Böhme, G., 1991. Continuity and change in Cenocoic herpetofaunas of Central Europe. Mitt. Zool. Mus. Berl. 67, 85-91.
Böhme, M., 2003. The Miocene climatic optimum: evidence from ectothermic vertebrates of Central Europe. Palaeogeo. Palaeoclimat. Palaeoecolog. 195, 389-401.
Bons, J., Geniez, P., 1996. Amphibiens et reptiles du Maroc (Sahara occidental compris)-Atlas biogeographique. Asociacion Herpetologica Espanola, Barcelona.
Borkin, L.Ya., 1999. Distribution of amphibians in North Africa, Europe, and the former Soviet Union. In: Duellman, W.E. (Ed.), Patterns of distribution of Amphibians. John Hopkins University press, Baltimore, London, pp. 329-420.
Borkin, L.Ya., Eremchenko, V.K., Helfenberger, N., Panfilov, A.M., Rozanov, J.M., 2001. On the distribution of diploid, triploid and tetraploid green toads in south-eastern Kazakhstan. Russ. J. Herpetol. 8 (1), 4553 [see also erratum in vol. 8 (3), 246].
Butler, R.W.H., McClelland, E., Jones, R.E., 1999. Calibrating the duration of the Messinian salinity crisis in the Mediterranean: linked tectonoclimatic signals in the thrust-top basins of Sicily. J. Geol. Soc., London 156, 827-835.
Castellano, S.C., Giacoma, C., Dujsebayeva, T., Odierna, G., Balletto, E., 1998. Morphometric and advertisement call geographic variation in polyploid green toads. Biol. J. Linn. Soc. 63, 257-281.
Chikvadze, V.M., 1985. Preliminary results of the study of Tertiary amphibians and squamates from Zaisan Basin. In: Darevsky, I.S. (Ed.),

Voprosy Gerpetologii, 6th All-Union Herpetological Conference. Nauka, Leningrad, pp. 234-235 [in Russian].
Claessens, L., 1997. On the Herpetofauna of some Neogene Mediterranean localities and the occurrence of Palaeobatrachus and Bufo (Amphibia, Anura) of the Lower Miocene of Turkey. J. Vert. Paleont. 17 (3), 39A.
Clement, M., Posada, D., Cradell, K.A., 2000. TCS: a computer program to estimate gene genealogies. Mol. Ecol. 9 (10), 1660-16657.
Contreras, L.C., Torres-Mura, J.C., Spontorno, A.E., 1990. The largest chromosome number for a mammal, in a South American desert rodent. Experientia 46, 506-508.
Coyne, J.A., Orr, H.A., 2004. Speciation. Sinauer Assoc. Inc., Sunderland, Mass.
Cunha, C., Coelho, M.M., Carmona, J.A., Doadrio, I., 2004. Phylogeographical insights in the origins of the Squalius alburnoides complex via multiple hybridization events. Mol. Ecol. 13, 2807-2817.
Darvesky, I.S., Danelyan, F.D., Sokolova, T.M., Rozanov, Yu.M., 1989. Intraclonal mating in the parthenogenetic lizard species Lacerta unisexualis Darevsky. In: Dawley, M., Bogart J.P. (Eds.), Evolution and Ecology of Unisexual Vertebrates. Mus. Bull. 466. Univ. State New York, New York State Museum, Albany, pp. 228-235.
Dawley, R.M., Bogart, J.P. (Eds.) 1989. Evolution and Ecology of Unisexual Vertebrates. Mus. Bull. 466. Univ. State New York, State Educ. Dep., New York State Museum, Albany, New York.
Dehal, P., Boore, J.L., 2005. Two Rounds of whole genome duplication in the ancestral vertebrate. PLoS 3 (10), e314.
Dobson, M., Wright, A., 2000. Faunal relationships and zoogeographical affinities of mammals in north-west Africa. J. Biogeogr. 27, 417-424.
Dubois, A., Martens, J., 1977. Sur les crapauds du groupe de Bufo viridis (Amphibiens, Anoures) de l'Himalaya occidental (Cachmire et Ladakh). Bull. Soc. Zool. France 102, 459-465.
Dujsebayeva, T., Castellano, S., Magni, P., Odierna, G., 2003. New data on distribution of amphibians and reptiles in the Aral Sea Basin and surrounding Kazakhstan, Part I. The green toads of Bufo viridis complex (Amphibia: Anura). Selevinia (The zoological year-book of Kazakhstan), 60-65.
Evans, B.J., Kelley, D.B., Tinsley, R.C., Melnick, D.J., Cannatella, D.C., 2004. A mitochondrial DNA phylogeny of African clawed frogs: phylogeography and implications for polyploid evolution. Mol. Phylogenet. Evol. 33, 197-213.
Evans, B.J., Kelley, D.B., Melnick, D.J., Cannatella, D.C., 2005. Evolution of RAG-1 in polyploid clawed frogs. Mol. Biol. Evol. 22 (5), 11931207.

Flindt, R., Hemmer, H., 1968. Über Bufo viridis im Vorderen Orient. [On B. viridis in the Middle East]. Salamandra (Frankf./M.).

Frost, D.R. (Ed.), 1985. Amphibian species of the world. A taxonomic and geographical reference. Allen Press and Ass. of Systematics Collections Lawrence, Kansas.
Frost, D.R., 2004. Amphibian Species of the World: an Online Reference. Version 3.0 22 August, 2004). Database <http://research.amnh.org/ herpetology/amphibia/index.php/>. Am. Mus. Nat. Hist., New York, USA.
Fu, J., Weadicka, C.J., Zengb, X., Wangb, Y., Liub, Z., Zhengb, Y., Lib, C., Huc, Y., 2005. Phylogeographic analysis of the Bufo gargarizans species complex: A revisit. Mol. Phylogenet. Evol. 37, 202-213.
Furlong, R.F., Holland, P.W.H., 2002. Were vertebrates octoploid? Phil. Trans. R. Soc. Lond. B 357, 531-544.
Garcia-Paris, M., Montori, A., Herrero, P., 2004. Amphibia, Lissamphibia. Fauna Iberica, vol. 24. Museo Nacional de Ciencias Naturales Consejo Superior de Investigaciones Cientificas, Madrid.
Gasc, J.P., Cabela, A., Crnobrnja-Isailovic, J., Dolmen, D., Grossenbacher, K., Haffner, P., Lescure, J., Martens, H., Martínez Rica J.P., Maurin, H., Oliveira, M.E., Sofianidou, T.S., Veith, M., Zuiderwijk A., (Eds.), 1997. Atlas of amphibians and reptiles in Europe. Collection Patrimoines Naturels, Paris, 29, 496 pp.
Goddard, K.A., Megwinoff, O., Wessner, L.L., Giaimo, F., 1998. Confirmation of gynogenesis in Phoxinus eos-neogaeus (Pisces: Cyprinidae). J. Hered. 89, 151-157.
Goebel, A.M., Donelly, J.M., Atz, M.E., 1999. PCR-primers and amplification methods for 12 s ribosomal DNA, the control region, cytochrome
oxidase I, and cytochrome b in bufonids and other frogs, and an overview of PCR primers which have amplified DNA in amphibians successfully. Mol. Phylogenet. Evol. 11 (1), 163-199.
Gregory, T.R., Mable, B.K., 2005. Polyploidy in animals. In: Gregory, T.R. (Ed.), The evolution of the genome. Elsevier, Amsterdam, Boston, Tokyo, pp. 428-501.
Grillitsch, B., Grillitsch, H., Splechtna, H., 1989. The tadpole of Bufo brongersmai Hoogmoed 1972. Amphibia-Reptilia 10, 215-229.
Günther, R., 1990. Die Wasserfrösche Europas. In: Ziemsen, A. (Ed.), Die Neue Brehm-Bücherei, vol. 600. Wittenberg, 288 pp [in German].
Günther, R., Uzzell, T., Berger, L., 1979. Inheritance patterns in triploid Rana "esculenta" (Amphibia, Salientia). Mitt. Zool. Mus. Berl. 55 (1), 35-57.
Herrero, P., Lopez-Jurado, L.F., Arano, B., Garcia-Paris, M., 1993. Karyotype analysis and nuclear DNA content of Bufo brongersmai Hoogmeed. J. Herpetol. 27 (4), 463-465.
Hewitt, G.M., 2004. Genetic consequences of climatic oscillations in the Quaternary. Phil. Trans. R. Soc. Lond. B 359, 183-195.
Huelsenbeck, J.P., Rannala, B., 1997. Phylogenetic methods come of age: Testing hypotheses in an evolutionary context. Science 276, 227-232.
Huelsenbeck, J.P., Ronquist, F., 2001. MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17 (8), 754-755.
Inger, R.F., 1972. Bufo of Eurasia. In: Blair, W.F. (Ed.), Evolution in the genus Bufo. Univ. Texas Press, Austin, London, pp. 102-118.
Jaeger, J.J., Coiffait, B., Tong, H., Denys, C., 1987. Rodent extinctions following Messinian faunal exchanges between western Europe and Northern Africa. Mém. Soc. Géol. France, N.S. 150, 153-158.
Jaillon, O., Aury J.-M., Brunet F. [+58 more], 2004. Genome duplication in the teleost fish Tetraodon nigroviridis reveals the early vertebrate protokaryotype. Nature 431, 946-957.
Kamp, U., Haserodt, K., 2004. Quarternary glaciations in the high mountains of northern Pakistan. In: Ehlers, J., Gibbard, P.L. (Eds.), Quaternary glaciations, extent and chronology, part III: South America, Asia, Africa, Australasia, Antarctica. In: Rose, J. (Ed.), Series: Development in Quaternary Science, vol. 2, Elsevier, Amsterdam, pp. 293-311.
Karakousis, Y., Kyriakopoulou-Sklavounou, P., 1995. Genetic and morphological differentiation among populations of the green toad Bufo viridis from Northern Greece. Biochem. Syst. Ecol. 23 (1), 39-45.
Kawamura, T., 1984. Polyploidy in Amphibians. Zool. Sci. 1, 1-15.
King, M., 1990. Amphibia. In: John, B., Kayano H., Levan A. (Eds.), Animal Cytogenetics, vol. 4. Chordata. Gebrüder Borntraeger, Berlin, Stuttgart.
Kordikova, E.G., 1998. Herpetofaunas of Kazakhstan in the Paleozoic, Mesozoic and Cenozoic. Vestnik KazGU [Kazakhskoi gosudarstvennoi universitet], ser. Biologiceskaya 6, 61-109.
Krjigsman, W., Hilgen, F.J., Raffi, I., Sierro, F.J., Wilson, D.S., 1999. Chronology, causes and progression of the Messinian Salinity Crisis. Nature 400, 652-655.
Kuhner, M.K., Yamato, J., Felsenstein, J., 1998. Maximum likelihood estimation of population growth rates based on the coalescent. Genetics 149, 429-434.
Kuzmin, S.L. 1999. The amphibians of the former Soviet Union. Pensoft, Sofia, 538 pp.
Le Comber, S.C., Smith, C., 2004. Polyploidy in fishes: patterns and processes. Biol. J. Linn. Soc. 82, 431-442.
Liu, W.Z., Lathrop, A., Fu, J.Z., Yang, D.T., Murphy, R.W., 2000. Phylogeny in east Asian bufonids inferred from mitochondrial DNA sequences (Anura: Amphibia). Mol. Phylogenet. Evol. 14 (3), 423-435.
Mable, B.K., 2004. 'Why polyploidy is rarer in animals than in plants': myths and mechanisms. Biol. J. Linn. Soc. 82, 453-466.
Macey, J.R., Schulte, J.A., Ananjeva, N.B., Larson, A., Rastegar-Pouyani, N., Shammakov, S.M., Papenfuss, T.J., 1998a. Phylogenetic relationships among agamid lizards of the Laudakia caucasica species group: testing hypothesis of biogeographic fragmentation and an area cladogram for the Iranian Plateau. Mol. Phylogenet. Evol. 10 (1), 118-131.
Macey, R.J., Schulte, J.A., Larson, A., Fang, Z., Wang, Y., Tuniyev, B.S., Papenfuss, T.J., 1998b. Phylogenetic relationships of toads in the Bufo bufo species group from the eastern escarpment of the Tibetan Plateau: A case of vicariance and dispersal. Mol. Phylogenet. Evol. 9 (1), 80-87.

Macey, J.R., Wang, Y., Ananjeva, N.B., Larson, A., Papenfuss, T.J., 1999. Vicariant Patterns of fragmentation among gekkonid lizards of the genus Teratoscincus produced by the Indian collision: A molecular phylogenetic perspective and an area cladogram for Central Asia. Mol. Phylogenet. Evol. 12 (3), 320-332.
Macey, J.R., Schulte, J.A., Kami, H.G., Ananjeva, N.B., Larson, A., Papenfuss, T.J., 2000. Testing hypothesis of vicariance in the agamid lizard Laudakia caucasia from mountain ranges of he Northern Iranian Plateau. Mol. Phylogenet. Evol. 14 (3), 479-483.
Mavárez, J., Salazar, C.A., Bermingham, E., Salcedo, C., Jiggins, C.D., Linares, M., 2006. Speciation by hybridization in Heliconius butterflies. Nature 441, 868-871.
Maxson, L.R., 1981. Albumin evolution and its phylogenetic implications in toads of the genus Bufo. II. Relationships among Eurasian Bufo. Copeia 1981, 579-583.
Mazik, E. Yu., Kadyrova, B.K., Tokotosunov, A.T., 1976. Osobennosti kariotipa zelenoi zhaby (Bufo viridis) v Kirgizii. Zool. Zh. 55, 17401742 [in Russian].
McLysaght, L., Hokamp, K., Wolfe, K.H., 2002. Extensive genome duplication during early chordate evolution. Nat. Genet. 31, 200-204.
Meyer, A., Schartl, M., 1999. Gene and genome duplications in vertebrates: the one-to-four (-to-eight in fish) rule and the evolution of novel gene functions. Curr. Opin. Cell Biol. 11, 699-704.
Mezhzherin, S.V., Pisanets, E.M., 1995. Genetic structure and origin of the tetraploid toad Bufo danatensis Pisanets, 1978 (Amphibia, Bufonidae) from Central Asia: Differentiation of geographic forms and genetic relationship between diploid and tetraploid species. Genetika 31, 342352 [in Russian].
Mlynarski, M., Böhme, G., Ullrich, H., 1978. Amphibian and reptilian remains from the late Pleistocene cover layer sequence of the Burgtonna travertine in Thueringia. Quatärpaläontologie 3, 223-226.
Morjan, C.L., Rieseberg, L.H., 2004. How species evolve collectively: implications of gene flow for the spread of advantageous alleles. Mol. Ecol. 13, 1341-1356.
Nei, M., Li, W., 1979. Mathematical model for studying variation in terms of restriction endonucleases. Proc. Natl. Acad. Sci. USA 76, 5269-5273.
Nevo, E., 1972. Climatic adaption in size of the green toad (Bufo viridis). Israel J. Med. Sci. 8, 1010.
Odierna, G., Aprea, G., Capriglione, T., Castellano, S., Balletto, E., 2004. Evidence for chromosome and pst I satellite DNA family evolutionary stasis in the Bufo viridis group (Amphibia, Anura). Chromosome Res. 12, 671-681.
Ogielska, M., Kierzkowski, P., Rybacki, M., 2004. DNA content and genome composition of diploid and triploid water frogs belonging to the Rana esculenta complex (Amphibia, Anura). Can. J. Zool. 82, 1894-1901.
Ohno, S., 1970. Evolution by genome duplication. Springer, New York.
Owen, L., Finkel, R.C., Caffee, M.W., Gualtieri, L., 2000a. Timing and multiple late Quaternary glaciations in the Hunza valley, Karakoram, NPakistan: Defined by cosmogenic radionucleide dating of moraines. Geol. Soc. Bull. 114 (5), 593-604.
Owen, L., Kamp, U., Spencer, J.Q., Haserodt, K., 2000b. Timing and style of late Quaternary glaciation in the Eastern Hindukush, Chitral, northern Pakistan: a review and revision of the glacial chronology based on new optically stimulated luminescence dating. Quatern. Int., 41-55.
Patterson, N., Richter, D.J., Gnerre, S., Lander, E.S., Reich, D., 2006. Genetic evidence for complex speciation of humans and chimpanzees. Nature doi:10.1038/nature04789.
Pauly, G.B., Hillis, D.M., Cannatella, D.C., 2004. The history of Nearctic colonization: molecular phylogentics and biogeography of Nearctic toads (Bufo). Evolution 58 (11), 2517-2535.
Petit, R.J., Aguinagalde, I., Beaulieu, J.-L., Bittkau C., Brewer, S. [+12 more], 2003. Glacial refugia: hotspots of genetic diversity. Science 300, 1563-1565.
Pisanets, E.M., 1978. O novom poliploidnom vide zhab Bufo danatensis Pisanets. sp. n. iz Turkmenii. Doklady Akad. Nauk Ukrainskoi SSR, Ser. B, geol., chim. i biolog. nauki 3, 280-284 [in Russian].
Plötner, J., 2005. Die Westpaläarktischen Wasserfrösche. Beiheft Z. Feldherp. 9, Laurenti, Bielefeld, 1-160 pp. [in German].

Posada, D., Crandall, K.A., 1998. Modeltest: testing the model of DNA substitution. Bioinformatics 14 (9), 817-818.
Pramuk, J.B., 2006. Phylogeny of South American Bufo (Anura: Bufonidae) inferred from combined evidence. Zool. J. Linn. Soc. 146, 407-452.
Proskuriakova, G.M., 1971. Some general features of the Bolshoi Balkhan flora. Ann. Nathist. Mus. Wien 75, 203-208.
Ptacek, M.B., Gerhardt, H.C., Sage, R.D., 1994. Speciation by polyploidy in treefrogs: multiple origins of the tetraploid, Hyla versicolor. Evolution 48 (3), 898-908.
Rab, P., Rabova, M., Bohlen, J., Lusk, S., 2000. Genetic differentiation of the two hybrid diploid-polyploid complexes of loaches, genus Cobitis (Cobitidae) involving C. taenia, C. elongatoides and C. spp. in the Czech Republic: Karyotypes and cytogenetic diversity. Folia Zool. 49 (Suppl. 1), 55-66.
Rage, J.-C., 2003. Oldest Bufonidae (Amphibia, Anura) from the Old World: A bufonid from the Paleocene of France. J. Vert. Paleont. 23 (2), 462-463.

Rage, J.-C., Rocek, Z., 2003. Evolution of anuran assemblages in the Tertiary and Quaternary of Europe, in context to paleoclimate and paleogeography. Amphibia-Reptilia 24, 133-167.
Rocek, Z., Rage, L.C., 2000. Tertiary anura of Europe, Africa, Asia, North America and Australia. In: Heatwole H., Carrol R.L. (Eds.), Amphibian Biology. Palaeontology, vol. 4. Surrey Beatty and Sons, USA, pp. 1332-1337.
Rögl, F., 1998. Paleogeographic considerations for Mediterranean and Paratethys seaways (Oligocene to Miocene). Ann. Naturhist. Mus. Wien 99A, 279-310.
Rögl, F., 1999. Circum-Mediterranean Miocene Paleogeography. In: Rössner, G., Heissig, K. (Eds.), The Miocene Land Mammals of Europe. Dr. Friedrich Pfeil, Munich, pp. 39-48.
Sanchiz, B., 1997. Factores causales de biodiversidad: especiacion y migracion en la batrachofauna europea. In: Aguirre, E., Morales, J., Soria, D. (Eds.), Registros fosiles e hitoria de la terra. Complutense, Madrid, pp. 185-206.
Sanchiz, B., 1998. Salientia. In: Wellnhofer, P. (Ed.), Part 4 of Encyclopedia of Paleoherpetology. Munich, pp. 1-276.
Schleich, H.H., Kästle, W., Kabisch, K., 1996.Amphibians and Reptiles of North Africa Koeltz Scientific books, Koenigstein, Germany.
Schmid, M., 1980. Chromosome evolution in Amphibia. In: Müller, H. (Ed.), Cytogenetics of Vertebrates. Birkhäuser, Basel, Boston, Stuttgart, pp. 4-27.
Schneider, S., Roesseli, D., Excoffier L., 2000. Arlequin ver 2.000. A software for population genetic analysis. <http://anthro.unigen.ch/ arlequin/>.
Schultz, R.J., 1969. Hybridization, unisexuality, and polyploidy in the teleost Poeciliopsis (Poecilidae) and other vertebrates. Am. Nat. 103, 606-619.
Schultz, R.J., 1980. Role of polyploidy in the evolution of fishes. In: Lewis, W.H. (Ed.), Polyploidy, biological relevance, Basic Life Sciences. Plenum Press, New York, London, pp. 341-378.
Simon, J.-C., Delmotte, F., Rispe, C., Crease, T., 2003. Phylogenetic relationships between parthenogens and their sexual relatives: the possible routes to parthenogenesis in animals. Biol. J. Linn. Soc. 79, 151-163.
Stöck, M., 1997. Untersuchungen zur Morphologie und Morphometrie diund tetraploider Grünkröten (Bufo viridis-Komplex) in Mittelasien (Amphibia: Anura: Bufonidae). Zool. Abh. Staatl. Mus. Tierkd. Dresden 49, 193-222.
Stöck, M., 1998a. Mating call differences between diploid and tetraploid green toads (Bufo viridis complex) in Middle Asia. Amphibia-Reptilia 19, 29-42.
Stöck, M., 1998b. Tetraploid toads (Bufo viridis complex) from northwestern China and preliminary taxonomic conclusions for Bufo nouettei Mocquard 1910. Z. Feldherp. (Bochum) 5, 139-166.
Stöck, M., Lamatsch, D.K., 2002. Triploide Wirbeltiere—Wege aus der Unfruchtbarkeit oder Eingeschlechtigkeit [Triploid VertebratesWays to escape from infertility and unisexuality]. Naturwiss. Rundsch. 55 (7), 349-358 [in German].
Stöck, M., Schmid, M., Steinlein, C., Grosse, W.-R., 1999. Mosaicism in somatic triploid specimens of the Bufo viridis complex in the

Karakoram with examination of calls, morphology and taxonomic conclusions. Ital. J. Zool. (Modena) 66 (3), 215-232.
Stöck, M., Günther, R., Böhme, W., 2001a. Progress towards a taxonomic revision of the Asian Bufo viridis group: Current status of nominal taxa and unsolved problems (Amphibia: Anura: Bufonidae). Zool. Abh. Staatl. Mus. Tierkunde Dresden 51, 253-319.
Stöck, M., Frynta, D., Grosse, W.-R., Steinlein, C., Schmid, M., 2001b. A review of the distribution of diploid, triploid and tetraploid green toads (Bufo viridis complex) in Asia including new data from Iran and Pakistan. Asiatic Herp. Res. (Berkeley) 9, 77-100.
Stöck, M., Bretschneider, P., Grosse, W.-R., 2001c. [„2000"]. The mating call and male release call of Bufo raddei Strauch, 1876 with some phylogenetic implications. Russ. J. Herp. 7 (3), 215-226.
Stöck, M., Lamatsch, D.K., Steinlein, C., Epplen, J.T., Grosse, W.-R., Hock, R., Klapperstück, T., Lampert, K.P., Scheer, U., Schmid, M., Schartl, M., 2002. A bisexually reproducing all-triploid vertebrate. Nat. Genet. 30 (3), 325-328.
Stöck, M., Steinlein, C., Lamatsch, D.K., Schartl, M., Schmid, M., 2005. Multiple origins of tetraploid taxa in the Eurasian Bufo viridis subgroup. Genetica 124, 255-272.
Sumida, M., Kaneda, H., Kato, Y., Kanamori, Y., Yonekawa, H., Nishioka, M., 2000. Sequence variation and structural conservation in the d-loop region and flanking genes of mitochondrial DNA from Japanese pond frogs. Genes Genet. Syst. 75, 79-92.
Suomalainen, E., Saura, A., Lokki, J., 1987. Cytology and evolution in parthenogenesis. CRC Press, Boca Raton, Florida.
Svartman, M., Stone, G., Stanyon, R., 2005. Molecular cytogenetics discards polyploidy in mammals. Genomics 85, 425-430.
Swofford, D.L., 2002. PAUP*: Phylogenetic Analysis Using Parsimony (* and other methods). Version 4. Sinauer Associates, Sunderland, MA.
Taberlet, P., Fumagalli, L., Wust-Saucy, A.-G., Cosson, J.-F., 1998. Comparative phylogeography and postglacial colonization routes in Europe. Mol. Ecol. 7, 453-464.
Tajima, F., 1989. Statistical methods for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123, 585-595.

Tandy, M., Bogart, J.P., Largen, M.J., Feener, D.J., 1982. A tetraploid species of Bufo (Anura, Bufonidae) from Ethiopia. Mon. Zool. Italiano, N.S., Suppl. XVII (1), 1-79.

Tandy, M., Bogart, J.P., Largen, M.J., Feener, D.J., 1985. Variation and evolution in Bufo kerinyagae Keith, B. regularis Reuss and B. asmarae Tandy et al. (Anura, Bufonidae). Mon. Zool. Italiano, N.S., Suppl. XX (12), 211-267.

Taylor, J.S., Raes, J., 2005. Duplication and divergence: The Evolution of new genes and old ideas. Annu. Rev. Genet. 38, 615-643.
Tchernov, E., 1988. The biogeographical history of the southern Levant. In: Yom-Tov, Y., Tchernov, E. (Eds.), The zoogeography of Israel. W. Junk Publ. (Kluwer Acad. Publ. Group), Dordrecht, Boston, Lancaster, pp. 159-250.
Tsigenopoulos, C.S., Rab, P., Naran, D., Berrebi, P., 2002. Mutiple origins of polyploidy of southern African barbs (Cyprinidae) as inferred from mtDNA markers. Heredity 88, 466-473.
Made, J. van der, 1999. Intercontinental relationship Europe-Africa and the Indian subcontinent. In: Rössner G., Heissig, K. (Eds.), The Miocene Land Mammals of Europe. Verlag Dr. Friedrich Pfeil, Munich, pp. 457-472.
Vasilev, V.P., Akimova, N., Emelyanova, N.G., Pavlov, D.A., Vasileva, E.D., 2003. Reproductive capacities in the polyploid of spined loaches from the unisexual-bisexual complex, occurred in the Moscow River. Folia Boil. (Kraków) 51, 67-73.
Vences, M., Wake, D.B., (in press.). Speciation, species boundaries and phylogeography of amphibians. In: Heatwole, H., (Ed.), Amphibian Biology, vol. 7.
Vinogradov, A.E., Borkin, L.J., Günther, R., Rosanov, J.M., 1990. Genome elimination in diploid and triploid Rana esculenta males: cytological evidence from DNA flow cytometry. Genome 33 (5), 619-627.
Wares, J.P., Cunningham, C.W., 2001. Phylogeography and historical ecology of the North Atlantic intertidal. Evolution 55, 2455-2469.
Zhou, L., Wang, Y., Gui, J.-F., 2000. Genetic evidence for gonochoristic reproduction in Silver Crucian Carp (Carassius auratus gibelio Bloch) as revealed by RAPD assays. J. Mol. Evol. 51, 498-506.

[^0]: * Corresponding author. Present address: Department of Ecology and Evolution, University of Lausanne, Biophore - Quartier Sorge, CH 1015 Lausanne, Switzerland. Fax: +41 216924165.

 E-mail address: matthias.stoeck@web.de (M. Stöck).

[^1]: ${ }^{1}$ Abbreviations used: 2n, diploid; 4n, tetraploid; 3n, triploid; 2ns, diploids; 3ns, triploids, 4ns, tetraploids; LGM, last glacial maximum of the Pleistocene; MRCA, most recent common ancestor; My, Million years, Mya, million years ago; ML, Maximum likelihood analysis, MP, Maximum Parsimony analysis; MB, Bayesian analysis using MrBayes; mtDNA, mitochondrial DNA; BMNH, British Museum of Natural History London, United Kingdom; MTD, Museum Tierkunde Dresden, Germany; MVZ, Museum of Vertebrate Zoology, University of California, Berkeley, USA; ZSM, Zoologische Staatsammlung Munich, Germany, HNHM, Hungarian National History Museum, Budapest, Hungary; ZFMK, Zoologisches Forschungsinstitut und Museum Alexander Koenig, Bonn, Germany; CUP, Charles-University, Praha, Czech Republic; NME, Naturkundemuseum Erfurt, Germany; CAS, California Academy of Sciences, San Francisco, USA; CS, Collection Schmidtler, private collection (will be transferred to ZSM) of Josef Friedrich Schmidtler, Munich, Germany.

