6 research outputs found

    Epineurial window is more efficient in attracting axons than simple coaptation in a sutureless (cyanoacrylate-bound) model of end-to-side nerve repair in the rat upper limb: Functional and morphometric evidences and review of the literature

    Get PDF
    End-to-side nerve coaptation brings regenerating axons from the donor to the recipient nerve. Several techniques have been used to perform coaptation: microsurgical sutures with and without opening a window into the epi(peri)neurial connective tissue; among these, window techniques have been proven more effective in inducing axonal regeneration. The authors developed a sutureless model of end-to-side coaptation in the rat upper limb. In 19 adult Wistar rats, the median and the ulnar nerves of the left arm were approached from the axillary region, the median nerve transected and the proximal stump sutured to the pectoral muscle to prevent regeneration. Animals were then randomly divided in two experimental groups (7 animals each, 5 animals acting as control): Group 1: the distal stump of the transected median nerve was fixed to the ulnar nerve by applying cyanoacrylate solution; Group 2: a small epineurial window was opened into the epineurium of the ulnar nerve, caring to avoid damage to the nerve fibres; the distal stump of the transected median nerve was then fixed to the ulnar nerve by applying cyanoacrylate solution. The grasping test for functional evaluation was repeated every 10-11 weeks starting from week-15, up to the sacrifice (week 36). At week 36, the animals were sacrificed and the regenerated nerves harvested and processed for morphological investigations (high-resolution light microscopy as well as stereological and morphometrical analysis). This study shows that a) cyanoacrylate in end-to-side coaptation produces scarless axon regeneration without toxic effects; b) axonal regeneration and myelination occur even without opening an epineurial window, but c) the window is related to a larger number of regenerating fibres, especially myelinated and mature, and better functional outcomes

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    The reasons for end-to-side coaptation: how does lateral axon sprouting work?

    No full text
    Nerve fibers are attracted by sutureless end-to-side nerve coaptation into the recipient nerve. Opening a window in the epineurium enhances axon attraction and myelination. The authors analyze the features of nerve repair by end-to-side coaptation. They highlight the known mechanisms of axon sprouting and different hypotheses of start up signals (presence or absence of an epineurial window, role of Schwann cells, signaling from the distal trunk). The clinical literature is also presented and differences between experimental and clinical applications are pointed out. The authors propose their point of view and perspectives deriving from recent experimental and clinical experiences

    Performance of rats in the grasping test following end-to-side neurorrhaphy.

    No full text
    <p>A: N-butyl-2-cyanoacrylate w/o epineurial window group (group 1); B: N-butyl-2-cyanoacrylate with epineurial window group (group 2). A predominately number of animals of group 2 has recovered motor function (five animals after 15 weeks and all the seven animals after 36 weeks), compared to group 1 (only two animals recovered motor function activity after 15 weeks, and three animals after 36 weeks). Data are presented as scatterplots showing individual animal values with integrated mean and variance values.</p

    Histograms showing the results of stereological and morphometric evaluations.

    No full text
    <p>Data of Group 1 (N-butyl-2-cyanoacrylate w/o epineurial window) are divided into two parts: animal which displayed functional recovery (n = 3) and animals which did not (n = 4). Group 2 (N-butyl-2-cyanoacrylate with epineurial window) shows more myelinated fibres compared to animals of Group 1 (N-butyl-2-cyanoacrylate w/o epineurial window) without functional recovery. Significant differences are detectable for the analyzed size parameters between animals of Group 1_with functional recovery and animals of Group 1_without functional recovery. Values in the graphics are expressed as mean+standard error. $: p ≤0.001 between control and both the experimental groups; **: p≤0.01; *: p≤0.05.</p
    corecore