132 research outputs found
Data Under Siege: The Quest for the Optimal Convolutional Autoencoder in Side-Channel Attacks
Encryption is a method to keep our data safe from third parties. However, side-channel information may be leaked during encryption due to physical properties. This information can be used in side-channel attacks to recover critical values such as the secret encryption key. To this end, it is necessary to understand the robustness of implementations to assess the security of data handled by a device. Side-channel attacks are one such method which allow researchers to evaluate the robustness of implementations using appropriate metrics.In the security community, machine learning is playing a prominent role in the study of side-channel attacks. A notable example of this is the use of Convolutional Autoencoders (CAE) as a preprocessing step on the measurements. In this work we study in depth the problem of finding the most suitable architecture of such Convolutional Autoencoders. To this end, Optuna is used to explore the CAE hyperparameter space. This process allows us to identify hyperparameters that outperform state-of-the-art autoencoders, reducing the needed traces for a succesful attack by approximately 37% in the presence of Gaussian noise and reducing the trainable parameters needed to attack desynchronization by a factor of 29. In addition to the promising results, experiments carried out in this paper allow a better understanding of the hyperparameter space in the field of side channel attacks, providing a solid base for future use of CAE in this specific domain
Recommended from our members
Synthesis and solution properties of a temperature-responsive PNIPAM–b-PDMS–b-PNIPAM triblock copolymer
In this paper, we report the synthesis and self-assembly of a novel thermoresponsive PNIPAM60–b-PDMS70–b-PNIPAM60 triblock copolymer in aqueous solution. The copolymer used a commercially available precursor modified with an atom transfer radical polymerization (ATRP) initiator to produce an ABA triblock copolymer via ATRP. Small-angle neutron scattering (SANS) was used to shed light on the structures of nanoparticles formed in aqueous solutions of this copolymer at two temperatures, 25 and 40 °C. The poly(dimethylsiloxane) block is very hydrophobic and poly(N-isopropylacrylamide) (PNIPAM) is thermoresponsive. SANS data at 25 °C indicates that the solutions of PNIPAM–b-PDMS–b-PNIPAM copolymers form well-defined aggregates with presumably core–shell structures below cloud point temperature. The scattering curves originating from nanoparticles formed at 40 °C in 100% D2O or 100% H2O were successfully fitted with the Beaucage model describing aggregates with hierarchical structure
Thopaz Portable Suction Systems in Thoracic Surgery: An end user assessment and feedback in a tertiary unit
Thopaz digital suction units were found to be user friendly and were liked by the staff and patients. The staff feedback stated the devices to be objective and scientific in making decisions about removal and enabled mobilisation
Gastrointestinal stromal tumor masquerading as a lung neoplasm. A case presentation and literature review
Gastrointestinal stromal tumors (GISTs) are rare neoplasms of the gastrointestinal tract. Their incidence in the esophagus is 1%–3%. Never has a GIST been documented to directly invade the lung. We report a primary esophageal GIST with direct invasion into the lung parenchyma, presenting predominantly with respiratory symptoms. We include a retrospective literature review. Although the principle 'common things are common' usually guides our everyday clinical practice, this case emphasizes that rare entities can mimic common pathologies and underlines the importance of having a clearly defined differential diagnostic list which should be meticulously scrutinized
Recommended from our members
LIVAS: A 3-D multi-wavelength aerosol/cloud database based on CALIPSO and EARLINET
We present LIVAS (LIdar climatology of Vertical Aerosol Structure for space-based lidar simulation studies), a 3-D multi-wavelength global aerosol and cloud optical database, optimized to be used for future space-based lidar end-to-end simulations of realistic atmospheric scenarios as well as retrieval algorithm testing activities. The LIVAS database provides averaged profiles of aerosol optical properties for the potential spaceborne laser operating wavelengths of 355, 532, 1064, 1570 and 2050 nm and of cloud optical properties at the wavelength of 532 nm. The global database is based on CALIPSO observations at 532 and 1064 nm and on aerosol-type-dependent backscatter- and extinction-related Ångström exponents, derived from EARLINET (European Aerosol Research Lidar Network) ground-based measurements for the UV and scattering calculations for the IR wavelengths, using a combination of input data from AERONET, suitable aerosol models and recent literature. The required spectral conversions are calculated for each of the CALIPSO aerosol types and are applied to CALIPSO backscatter and extinction data corresponding to the aerosol type retrieved by the CALIPSO aerosol classification scheme. A cloud optical database based on CALIPSO measurements at 532 nm is also provided, neglecting wavelength conversion due to approximately neutral scattering behavior of clouds along the spectral range of LIVAS. Averages of particle linear depolarization ratio profiles at 532 nm are provided as well. Finally, vertical distributions for a set of selected scenes of specific atmospheric phenomena (e.g., dust outbreaks, volcanic eruptions, wild fires, polar stratospheric clouds) are analyzed and spectrally converted so as to be used as case studies for spaceborne lidar performance assessments. The final global data set includes 4-year (1 January 2008–31 December 2011) time-averaged CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations) data on a uniform grid of 1° × 1° with the original high vertical resolution of CALIPSO in order to ensure realistic simulations of the atmospheric variability in lidar end-to-end simulations
Tornado: Automatic Generation of Probing-Secure Masked Bitsliced Implementations
International audienceCryptographic implementations deployed in real world devices often aim at (provable) security against the powerful class of side-channel attacks while keeping reasonable performances. Last year at Asiacrypt, a new formal verification tool named tightPROVE was put forward to exactly determine whether a masked implementation is secure in the well-deployed probing security model for any given security order t. Also recently, a compiler named Usuba was proposed to automatically generate bitsliced implementations of cryptographic primitives.This paper goes one step further in the security and performances achievements with a new automatic tool named Tornado. In a nutshell, from the high-level description of a cryptographic primitive, Tornado produces a functionally equivalent bitsliced masked implementation at any desired order proven secure in the probing model, but additionally in the so-called register probing model which much better fits the reality of software implementations. This framework is obtained by the integration of Usuba with tightPROVE+, which extends tightPROVE with the ability to verify the security of implementations in the register probing model and to fix them with inserting refresh gadgets at carefully chosen locations accordingly.We demonstrate Tornado on the lightweight cryptographic primitives selected to the second round of the NIST competition and which somehow claimed to be masking friendly. It advantageously displays performances of the resulting masked implementations for several masking orders and prove their security in the register probing model
Using next-generation sequencing for high resolution multiplex analysis of copy number variation from nanogram quantities of DNA from formalin-fixed paraffin-embedded specimens
The use of next-generation sequencing technologies to produce genomic copy number data has recently been described. Most approaches, however, reply on optimal starting DNA, and are therefore unsuitable for the analysis of formalin-fixed paraffin-embedded (FFPE) samples, which largely precludes the analysis of many tumour series. We have sought to challenge the limits of this technique with regards to quality and quantity of starting material and the depth of sequencing required. We confirm that the technique can be used to interrogate DNA from cell lines, fresh frozen material and FFPE samples to assess copy number variation. We show that as little as 5 ng of DNA is needed to generate a copy number karyogram, and follow this up with data from a series of FFPE biopsies and surgical samples. We have used various levels of sample multiplexing to demonstrate the adjustable resolution of the methodology, depending on the number of samples and available resources. We also demonstrate reproducibility by use of replicate samples and comparison with microarray-based comparative genomic hybridization (aCGH) and digital PCR. This technique can be valuable in both the analysis of routine diagnostic samples and in examining large repositories of fixed archival material
Recommended from our members
A methodology for investigating dust model performance using synergistic EARLINET/AERONET dust concentration retrievals
Systematic measurements of dust concentration profiles at a continental scale were recently made possible by the development of synergistic retrieval algorithms using combined lidar and sun photometer data and the establishment of robust remote-sensing networks in the framework of Aerosols, Clouds, and Trace gases Research InfraStructure Network (ACTRIS)/European Aerosol Research Lidar Network (EARLINET). We present a methodology for using these capabilities as a tool for examining the performance of dust transport models. The methodology includes considerations for the selection of a suitable data set and appropriate metrics for the exploration of the results. The approach is demonstrated for four regional dust transport models (BSC-DREAM8b v2, NMMB/BSC-DUST, DREAMABOL, DREAM8-NMME-MACC) using dust observations performed at 10 ACTRIS/EARLINET stations. The observations, which include coincident multi-wavelength lidar and sun photometer measurements, were processed with the Lidar-Radiometer Inversion Code (LIRIC) to retrieve aerosol concentration profiles. The methodology proposed here shows advantages when compared to traditional evaluation techniques that utilize separately the available measurements such as separating the contribution of dust from other aerosol types on the lidar profiles and avoiding model assumptions related to the conversion of concentration fields to aerosol extinction values. When compared to LIRIC retrievals, the simulated dust vertical structures were found to be in good agreement for all models with correlation values between 0.5 and 0.7 in the 1–6 km range, where most dust is typically observed. The absolute dust concentration was typically underestimated with mean bias values of -40 to -20 μg m−3 at 2 km, the altitude of maximum mean concentration. The reported differences among the models found in this comparison indicate the benefit of the systematic use of the proposed approach in future dust model evaluation studies
A diagnostic cohort study on the accuracy of 18-fluorodeoxyglucose (18FDG) positron emission tomography (PET)-CT for evaluation of malignancy in anterior mediastinal lesions: the DECiMaL study.
The aim of this study is to collate multi-institutional data to determine the value by defining the diagnostic performance of fluorodeoxyglucose positron emission tomography (FDG PET)/CT for malignancy in patients undergoing surgery with an anterior mediastinal mass in order to ascertain the clinical utility of PET/CT to differentiate malignant from benign aetiologies in patients presenting with an anterior mediastinal mass SETTING: DECiMaL Study is a multicentre, retrospective, collaborative cohort study in seven UK surgical sites.This article is freely available via Open Access. Click on the Additional Link above to access the full-text via the publisher's site
- …