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Abstract—Encryption is a method to keep our data safe from
third parties. However, side-channel information may be leaked
during encryption due to physical properties. This information
can be used in side-channel attacks to recover critical values
such as the secret encryption key. To this end, it is necessary
to understand the robustness of implementations to assess the
security of data handled by a device. Side-channel attacks are one
such method which allow researchers to evaluate the robustness
of implementations using appropriate metrics.

In the security community, machine learning is playing a
prominent role in the study of side-channel attacks. A notable
example of this is the use of Convolutional Autoencoders (CAE)
as a preprocessing step on the measurements. In this work
we study in depth the problem of finding the most suitable
architecture of such Convolutional Autoencoders. To this end,
Optuna is used to explore the CAE hyperparameter space. This
process allows us to identify hyperparameters that outperform
state-of-the-art autoencoders, reducing the needed traces for
a succesful attack by approximately 37% in the presence of
Gaussian noise and reducing the trainable parameters needed
to attack desynchronization by a factor of 29. In addition to the
promising results, experiments carried out in this paper allow
a better understanding of the hyperparameter space in the field
of side channel attacks, providing a solid base for future use of
CAE in this specific domain.

Index Terms—Convolutional Autoencoder, Side-Channel At-
tack, Hyperparameter search, Encryption, Power Analysis,
Desynchronization, Gaussian Noise, Random Delay Interrupts

I. INTRODUCTION

Starting with the advent of internet and the consequent
diffusion of digital applications, data has become increasingly
central in our way of life. Data transfers can happen at short
or long distances, for example from a computer to a mobile
phone or from an edge or IoT device to a server in a remote
location on the globe. Naturally, this increases the exposure to
security risks. To protect our sensitive data from unauthorized
access, we generally rely on encryption [1]. When encryption
is used correctly, data can not be recovered unless in possess
of the correct encryption key.

However, the use of secure encryption algorithms is not
sufficient to ensure data protection. Though mathematically
sound constructs may be implemented in a device, the physical
properties of the implementation can unintentionally leak
information to the outside world in what are called side-
channels. This, in turn, can expose secret information such

as the secret encryption key. A few examples of these side-
channels are the device’s power consumption, timing needed to
complete the computation and electromagnetic radiation [2]–
[6]. By far, the most studied side channel attack is power
analysis, that exploits the correlation between the power
consumed by the device and the secret data to infer the latter
one [2], [3], [6], [7]. The focus of this paper is also on power
analsys attacks. Because of this, in the remainder of the paper,
when speaking about Side-Channel Attacks we will refer to
Side-Channel Attacks using power analysis, unless differently
specified.

To ensure the confidentiality of data, it is necessary to assess
the physical implementation against Side-Channel Attacks
(SCA) [8]. We generally distinguish SCA in two categories,
the first category is direct attacks such as simple power
analysis and differential power analysis. In direct attacks, the
leaked information from the target device is used to directly
model the sensitive values targeted, using simple leakage
assumptions. The second category is profiled attacks such as
the template attack and machine learning based attacks [9].
The profiling attacks consists of two phases, the first of which
is to identify the target device and acquire a clone device of the
target device. Information about the Side-Channel leakage is
collected from the clone device and a leakage model is trained.
The second phase is the attack phase in which the trained
model is used to extract the sensitive values with leakage from
the target device [10].

The family of profiling attacks is currently considered the
most powerful one. This power comes from the use a clone of
the target device to tune the attack before carrying out actual
attack [4]. Deep-learning based profiling attacks are fairly new
to the field of SCA [11] but are seen as a promising attack
vector and therefore should be investigated further. This work
is a step in this direction.

To stop or hinder attacks, countermeasures are implemented
either in software, hardware or both. Countermeasures can
be split into two categories: Masking and Hiding [10], [12].
Masking is when the sensitive values are split into different
shares and processed separately. This is done to decrease
the correlation between the sensitive values and the leaked
information. The hiding category on the other hand works
hiding the leakage in a direct manner. This can be done by
adding noise or by adding random delays in the code or



hardware making the information more difficult to find [12].
The countermeasures can be seen as noise because of their

randomness [12]. In addition to countermeasures, attacker has
to deal also with the inherent noise due to the measurement
setup. The problem is that classifiers tend to overfit when they
are trained on noisy or high-dimensional traces [10]. This
reduces their performance on the validation set as well as
during the attack. A solution to the problem is to apply a
divide and conquer method: first reducing the noise in the
training data and then mounting the attack with a different
mode. In this paper this will be done by reducing noise
using a Convolutional Autoencoder. The main advantage of
preprocessing the traces is less overfitting, however other
advantages include: (1) The complexity and computational
power of the second model can be reduced [10], (2) the ability
to mount more effective attacks, (3) the ability to understand
noise better and (4) the ability to understand the attack model
better [12].

A. Related work

In SCA, power traces can be used to attack the target device.
Power traces are a sequence of power measurements which
have been made during the encryption. Recent works have
introduced and shown promising results using a Convolutional
AutoEncoder (CAE) to preprocess power traces with coun-
termeasures in order to remove these countermeasures [10],
[12], [13]. After preprocessing, the attack can be performed
on traces which should be cleaner and thus easier to perform
the attack with. Some research has been done on CAEs for
profiled attacks by Wu et al. and Paguada et al. [10], [12]. Wu
et al. made a single CAE to reduce the noise from 5 different
countermeasures as well as some of these countermeasures
combined. Paguada et al. explore the use of CAE further by
setting new criteria for successful convolutional architectures
for CAEs in the SCA space such as the use of dilation.
Both of these papers however did not dive into how the
hyperparameters and CAE architecture were found, therefore
leaving a gap in knowledge. In addition to this, as far as the
hyperparameter space is discussed in both papers, Wu et al.
focused more on the optimizer, activation function, batch size,
epochs, training size and validation size. Paguada et al. focused
especially on stride and dilation. In our work we will focus
on most of the parameters above, however in addition to this
the latent space, number of layers, number of filters per layer,
pool size and kernel size will be addressed as well due to the
lack of prior exploration.

B. Contribution

Our paper improves the existing architectures for Convolu-
tional Autoencoders in Side-Channel Attacks. These autoen-
coders convert power traces with countermeasures back to
raw power traces in order to increase Side-Channel Attack
performance. Our work explores a bigger hyperparameter
space than previous works using the search framework Optuna.
Three architectures will be given for the different counter-
measures Gaussian noise, Desynchronization and Random

Delay Interrupts. Following, the selection of hyperparameters
will be discussed extensively and per countermeasure. This
will allow to understand, for different SCA scenario’s, which
hyperparameters to use, when use it, and in what range should
it be. The Gaussian noise architecture in this work is compared
with related works [12], needing about 37.5 percent less traces
for a successful attack. The desynchronization architecture
needs slightly more traces than previous works, however
the architecture needs 29 times fewer trainable parameters.
Finally the Random Delay Interrupt network gives similar
performance but being found by an automated process like the
other two networks, it does not require manually searching the
hyperparameter space.

II. BACKGROUND

A. Convolutional neural network

A convolutional neural network (CNN) is a type of network
that makes use of convolutions in the form of convolutional
layers. Typically it also has pooling layers, and at the end one
or more fully-connected layers. By using the convolutional
layers the CNN is a solution to reducing the complexity of
neural networks which have large data structures as an input
[14]. An additional advantage of the use of convolutional
layers is that the CNN is spatially or shift invariant. In other
words, the position of the object being detected is not a
determining factor [15].

The convolutional layer which gives the network its name
is a special type of layer. In the case of power traces a 1-
dimensional convolution is used. In the 1 dimensional convo-
lutional layer a vector is used which acts as a filter. The vector
slides across the data, every time it slides it multiplies the
local region with its weights and then sums these. After doing
this on the input a new vector consisting of all the regional
computed numbers is made. The values of this new vector are
first put through an activation function and then passed on to
the next layer [15].

Both the size of the filter and the amount the filter or vector
slides between its regional computations can be altered. The
number of units it moves between each computations is called
stride [10]. The stride is set to 1 by default, however by
increasing it, the overlap of the filter each time it moves can be
decreased as well as the size of the output. One convolutional
layer usually consists out of multiple filters. Having multiple
of these filters makes the network able to extract different
features from the data within each layer [15].

ReLu has recently been the most often used activation func-
tion for CNNs. This is first of all because its computational
costs is very low as the formula only selects the largest value
out of 0 and its input.

ReLu(x) = max(0, x) (1)

Another important reason for its common use is that the
ReLu function has a constant gradient for all of the positive
input whereas others have a near 0 gradient everywhere but



Fig. 1: The inner workings of an autoencoder illustrated by
Paguada et al. [10]

near x = 0. Therefore the vanishing gradient problem as the
network grows deeper can be avoided [15].

The pooling layer is a layer which is used to down-
sample the data by using a pooling function, which in its
turn decreases the complexity of both the data and the next
layers in the model. Some examples of pooling functions are
minimum pooling, average pooling and max pooling. The most
commonly used pooling function however is the max pooling
function. This function takes a subregion of the data and then
downscales it by only passing the maximum value of each
subregion on to the next layer. A very common size for the
subregion is a 2x2 area [15].

Finally, the fully-connected layer usually makes up the last
few layers. The fully-connected layers are completely the same
as the layers in the multi-layer perceptron neural network, and
thus consist out of nodes connected by weights. The fully
connected layers are then the part of the CNN with the most
parameters and takes long to train [16]. The ReLu function
is then recommended again as it is low in computational cost
[14]. These final layers compute the final class scores [12].

B. Autoencoders

Autoencoders [17], introduced in the context of training
unsupervised networks with backpropagation, are designed to
output its input back but with as much noise removed as
possible [18]. The autoencoder consists of an encoder (φ) and
a decoder (ψ). The encoder maps the input space (f ) to the
latent space (s). After this the decoder tries to reconstruct the
input from the latent space, we call the reconstruction f̂ . An
overview of this can be seen in Fig. 1. The goal is to minimize
equation (2).

MSE(f, f̂) =
1

N

N∑
i=1

(fi − f̂i)
2 (2)

When the latent space is chosen correctly and this formula
gets optimized, the output of the autoencoder should resemble
the input as much as possible.

In this work, the autoencoder will be used for removing
the countermeasures which we consider to be noise. The
input will therefore be traces with added countermeasures.
Instead of using these as label as well as is conventional with
autoencoders, clean traces will be used as label. Since the
autoencoder can only bring part of the information through
the smaller latent space only the most representative input
features remain after the reconstruction [12]. This should result
in removing the noise and recovering the raw traces as well
as possible.

C. Optuna

Optuna [19] is a framework to efficiently search through
the hyperparameter space of the machine learning model. It
consists of sampling and pruning strategies.

The sampling strategy determines which next hyperpa-
rameter set to try, given the previously used sets and their
performance. The default sampler in Optuna is the Tree-
structured Parzen Estimator (TPE) [20]. TPE fits two Gaussian
Mixture Models. One to the set of hyperparameters with
the best objective values f(x), and one to the remaining
hyperparameters with worse values g(x). It then calculates the
ratio between them f(x)

g(x) . The next hyperparameter that will be
evaluated is the one that maximizes the calculated ratio.

The pruning strategy determines how the performance is
evaluated of a used hyperparameter set. The default pruner
in Optuna is the median pruner. This pruner compares the
trial’s best intermediate result with the median of intermediate
results of the previous trials at the same step. If the trial’s best
intermediate result is worse, it will be pruned, otherwise the
trial can continue [19]. Optuna also takes an objective function
to suggest hyperparameters.

D. Side-Channel Attacks

The first type of Side-Channel Attacks involves direct
attacks such as simple power analysis or differential power
analysis, where the target device is directly attacked for
example by taking power consumption measurements from it
and analysing these under simple model assumptions. This can
reveal a lot of information about the target and the encryption
code being deployed [21]. However, direct attacks need to
make a priori assumptions about the device leakage and this
may lead to overestimating the security level. The second type,
profiled Side-Channel Attacks, instead offers powerful leakage
modeling options [4], [9], [10], [22]–[24] thus improving the
attack’s success rate. In addition, they can already be effective
in attacking with just a few traces available from the target
device. In this work only profiled Side-Channel Attacks will
then be evaluated. The profiled attacks that will be used are
the multi-layer perceptron (MLP), Template Attack (TA) and
Convolutional Neural Network (CNN). The reason for this
being that these are the models used in both the works from



Fig. 2: Overview of a Profiled Side-Channel Attack [10].
Firstly a clone of the target device is acquired. Subsequently
power measurements are collected from the device while
performing cryptographic operations. Next a attack model is
made using these measurements. Finally the model is used to
attack the target device.

Wu et al. and Benadjila et al. making the results in this work
easier to compare [4], [12].

1) Profiled Side-Channel Attacks: In a profiled Side-
channel Attack first of all the target device is selected. When
the target device is selected a clone of the target device is
acquired in order to start the profiling phase [10], [24]. The
profiling phase starts by gathering leakage traces, the input
during the leakage trace and the labels corresponding to the
leakage trace. These labels represent the sensitive values that
the attack aims to discover. After this information is gathered
the next step in the profiling phase is to train the model to fit
on this information. The model is evaluated and if it performs
well enough the attack phase can start. In this phase a limited
number of inputs with their corresponding leakage traces is
acquired from the target device. This information is fed to
the model which should then then be able to construct the
sensitive values from this information [10]. A brief overview
of Profiled Side-Channel Attacks can be seen in Fig. 2.

2) Multi-layer perceptrons: One model that can be imple-
mented in profiling attacks is the multi-layer perceptron. To
be able to use it in SCA the number of nodes in the input
layer should be the same as the amount of data points in the
leakage traces. The hidden layers should then be designed on
a case-by-case basis. The output layer should have the amount
of nodes corresponding to the amount of classes that can be
predicted in the specific SCA situation.

3) Convolutional neural network: Another model that can
be employed in profiling attacks is the Convolutional neural
network. The designing of the input layer and the output layer
is similar to the MLP implementation. The input layer should
also have the same shape as the leakage traces, and as well as
the MLP the output layer which is a dense layer should have
the same number of nodes as the amount of classes that can
be predicted in the corresponding SCA case. The hidden layer
can be a bit more difficult in design since it contains more
types of layers but should also be designed on a case-by-case

basis.
4) Template attack: The Template Attack (TA) [25] as well

as the CNN and MLP belongs to the family of profiled attacks.
It is a statistical technique which uses Bayes Theorem and
mostly relies on the normal (Gaussian) distribution [23]. TA
assumes that the features are dependent on each other and uses
a multivariate Gaussian distribution to model this. A model
using the multivariate Gaussian distribution is made for each
key. This can be seen in the following formula.

N (t|µk,Σk) =
1√

(2π)N |Σk|
e−

1
2 (t−µk)

TΣ−1
k (t−µk) (3)

In (3) t is a trace, µk is the mean vector, and Σk is the
covariance matrix these last two correspond to traces that
belong to a certain encryption key (k).

k̂ = argmax
k

P (k|tattack)

⇐⇒ argmax
k

P (tattack|k)P (k) (4)

⇐⇒ argmax
k

N (t|µk,Σk)

After a model is made for each key candidate the traces
from the target device are used to determine which model is
most likely and thus which key has the highest probability.
This is done using Bayes rule and can be seen in (4).

E. Countermeasures in power traces

As stated in the introduction most countermeasures can be
divided into two categories: Masking and hiding [10], [12]
this work will focus solely on the hiding category. Out of
many hiding tactics a important tactic and one that will be
focused on in this work is the addition of Gaussian noise.
In the time dimension this work will focus on desynchro-
nization of the trace and random delay interrupts which are
implemented in software. Another example could however
be clock jitters which are implemented in hardware. Since
these countermeasures are implemented at random, we can
consider these countermeasures to be noise and try to filter
them out [12].

1) Gaussian noise: In Side-Channel leakage traces Gaus-
sian noise is the most common type of noise. This is both
due to countermeasures taken as well as the fact that it can
occur due to the working environment. Sources can be the
transistor, data buses, the record device or the wires to the
record device. Some ways to implement Gaussian noise as a
countermeasure are by doing parallel operations (algorithmic
noise) or a dedicated noise engine or generator [12], [26].
In order to replicate the countermeasure, we added Gaussian
noise to the leakage traces. To do so we simply added a value
sampled from a Gaussian distribution to each data point in the
leakage trace. The Gaussian distribution used in this work has
a mean of 0 and a variance of eight. For the countermeasures
Gaussian noise, Desynchronization as well as RDI they were
added with the same settings and code as in [12].



2) Desynchronization: After leakage data from a device has
been recorded the points of interest (POI) where the encryption
starts have to be found in the data. Most of the time this
process is done by finding a ‘trigger’ which is a distinctive
point in all traces after which the (POI) start. Finding a bad
trigger can result in a lot of noise between the trigger and
POIs resulting in a desynchronized trace. Countermeasures can
be taken so that more desynchronization happens. Since well
synchronized traces can significantly improve the correlation
between the traces and sensitive values [12] this will make it
more difficult to perform SCA. To accomplish desynchroniza-
tion we added random delays in a device’s software code. This
countermeasure adds noise to time dimension (x-axis) instead
of the power consumption ( y-axis). This countermeasure
was already in the ASCAD database and has a maximum
desynchronization value of 50 points.

3) Random Delay Interrupt (RDI): Another countermea-
sure which will be focused on in this work is the Random
Delay Interrupt (RDI). Where the Desynchronization counter-
measure moves all points left or right, the RDI interrupts the
encryption process at random points in time. This can be done
in practice by using the NOP operation. This countermeasure
affects the time dimension more locally than the desynchro-
nization and thus breaks up the trace in more pieces adding
significant noise and randomness to the time dimension [12].
The Random Delay Interrupts were added using the Floating
Mean method introduced in [27]. Parameter a was equal to 5
and parameter b equal to 3.

III. METHOD

First in this section, information will be given about the
dataset used in the experiments. Secondly the model op-
timization will be discussed including the hyperparameter
range for the autoencoder, how the hyperparamater space will
be explored and a restriction which needs to be satisfied
by the autoencoder. In addition, the hardware used for the
experiments will be discussed and finally we describe the
performance metric used to estimate the effectiveness of the
CAE.

A. Data set

In this work the ASCAD database will be used. This
database was introduced by Prouff et al. to serve as an open
and common database for researchers so that improved and
new architectures can be easily compared in the same settings
[4]. Wu et al. used the same dataset in their work where
they created the original CAE architecture [12]. The ASCAD
database consists out of two data sets, one with fixed key
encryption and one with random keys encryption. In this work
only the fixed key dataset will be used. The traces in this
dataset were created with a Atmega8515 8-bit microcontroller.
The dataset consists out of 50 000 profiling traces and 10
000 attack traces and their corresponding labels. Each of these
traces is time-aligned in a preprocessing step and contains 700
datapoints [4]. The profiling traces are used for training and
validation for the CAE, CNN and the MLP. The attack traces

TABLE I: The hyperparameter search space

Hyperparameter Range
Epochs 1-200
Activation function ReLU, SeLU
Optimization function RMSprop, SGD, Adam
Latent space (nodes) 1-700
Total convolutional layers 1-12
Number of filters 1-256∏

Pool size 1-350
Batch size 128
Kernel size 2-16
Dilation 1-4
Training set 40 000
Validation set 10 000

are then used to simulate an attack after the profiling phase
and measure the guessing entropy.

B. Model optimization

In this work, we aim to improve upon the existing Convo-
lutional Autoencoders for SCA. To do so the findings from
other papers were taken into account. One of these findings
is that in recent works from Paguada et al. it was shown that
using dilation in CNNs can be very useful [10]. This is due
to the fact that convolutions start mapping redundant features
when they are covering too much signal. When they do so they
start representing non relevant information [28]. Therefore the
amount of dilation will be taken into account when choosing
the hyperparameters for the CAE. In Table I an overview is
shown of the different hyperparameters and the range used to
search in this work. These were mostly restricted due to either
time constraints or hardware limitations.

Since the eventual goal of improving the CAE is to improve
guessing entropy this would have been the best choice in
measuring the performance of the CAE. However, to properly
test the guessing entropy multiple attacks have to be performed
and averaged which is too costly in terms of time. Additionally
every time the guessing entropy would have to be measured
for attacks with several different models such as a CNN,
MLP and TA all of which would have to be trained as well.
All together this would have taken too much time for the
scope of this work. So instead the validation loss has been
taken as a measure of performance in the search of the best
hyperparameters for the CAE.

The hyperparameter space will be searched with Optuna
using the TPE sampler and Median Pruner. In the exploration
of this hyperparameter space with Optuna there is one main
challenge to be faced. This challenge is that some of the
hyperparameters that will be selected also have influence on
the output size of the model. The dimensions and size of the
output of an autoencoder should however always be the same
as the input. Therefore the following formula needs to be taken
as a constraint in the search of hyperparameters [12].

Sdense0 =
Sclean∏n
i=1 Spool,i

·Nfilter0 (5)

In (5) Sdense0 is the amount of nodes in the first dense layer
in between the encoder and decoder. The variable Sclean is



TABLE II: Gaussian noise CAE architecture

Layer No. filters Dilation Kernel size Pool No. neurons
Conv 47 1 11 1 -
Conv 70 4 15 2 -
Conv 45 2 7 1 -
Conv 45 1 4 1 -
Conv 19 2 9 10 -
Conv 27 2 14 1 -
Flatten - - - - -
Dense - - - - 635
Dense - - - - 945
Reshape - - - - -
Conv 27 1 4 1 -
Conv 19 1 14 10 -
Conv 45 3 15 1 -
Conv 45 2 12 1 -
Conv 70 3 16 2 -
Conv 47 3 1 1 -

the input size of the autoencoder. The bottom of the fraction∏n
i=1 Spool,i is the product of all max pool layers, and Nfilter0

is the amount of filters in the first layer of the decoder.
Since the hyperparameters will be chosen by the sampler in

Optuna it would be best to define this restriction in Optuna.
However Optuna only supports soft restrictions which means
it will try to stay within the restrictions but not guarantee it.
In the case it goes outside of the restrictions however the code
will error out and valuable training time would be lost. In order
to ensure this will not happen, Optuna chooses

∏n
i=1 Spool,i

freely. All valid combinations for the other two variables
Slatent and Nfilter0 will then be calculated and Optuna can
pick one of these combinations.

1) Hardware: The search and training was done on GPUs,
of which several were part of the Distributed ASCI Supercom-
puter (DAS) [29]. The used GPUs include the Nvidia RTX
3080, Nvidia GTX Titan X (pascall generation), Nvidia GTX
Titan Xs (Maxwell), Nvidia RTX 2080 Ti and the Nvidia A40.

2) Guessing entropy: Guessing entropy is a standard eval-
uation metric in SCA [10], [30]. This is the metric that will
also be used in this work to be able to compare the optimized
autoencoder against other research. In an attack a vector is
made with all key candidates sorted from most likely to least
likely. The guessing entropy is the average position of the
correct key candidate in this sorted vector [10], [31]. When
the guessing entropy is equal to 0 it means that the correct
key can typically be found by the model. However having a
very low guessing entropy can be sufficient, since the attacker
would only have to try out a limited number of keys to still
complete the attack.

IV. RESULTS

The results are represented by three graphs for every coun-
termeasure. The first graph will be the Validation Loss of
the CAE over the training in epochs. The second graph will
show the validation loss for the CNN used as attack model.
The last graph will show how the guessing entropy converges
on average over 100 attacks. The vertical axis represents the
guessing entropy and the horizontal axis in this graph is the
amount of traces used for the attack.

TABLE III: Desynchronization CAE architecture

Layer No. filters Dilation Kernel size Pool No. neurons
Conv 2 1 11 4 -
Flatten - - - - -
Dense - - - - 138
Dense - - - - 350
Reshape - - - - -
Conv 2 3 9 4 -

1) Gaussian Noise: First of all for the Gaussian noise CAE
the activation function found by Optuna is Relu, the optimizer
Adam and the number of epochs 25. This CAE does seem
to have the CNN and MLP converge towards a Guessing
entropy of 0 however not within the 10 000 traces attack
data set as can be seen in Fig. 3 (c). As illustrated in Fig.
4 (c), training the same CAE for 100 epochs instead of 25
results in better performance compared to the CNN, MLP
or TA on their own which all needed over 10 000 traces
and previous autoencoder-CNN, MLP or TA combinations.
This includes the autoencoder-CNN combination from Wu
et al. [12] which was the best performing combination and
needed about 8800 traces. Furthermore, the MLP suddenly
stops converging towards a GE of 0. In addition to this
denoising with averaging as done by Wu et al. still performs
better than the CAE found in this work [12]. After denoising
with the CAE it takes around 6000 traces for a GE of 0 while
around 1800 traces suffice when averaging is used. A further
exploration of the epoch hyperparameter has been done in
steps of 5 in the range from 5 to 200 epochs. Within this
range only spikes can be found in which the CAE delivers a
better Guessing Entropy. The best performing models seem to
be around the range of 100 epochs, but no clear trend can be
found.

2) Desynchronization: As for the desynchronization CAE
the activation function found by Optuna is Selu, the optimizer
Adam and the number of epochs 171. In Fig. 5 (c) we can
see the best found CAE architecture for desynchronization
combined with the CNN manages to get a guessing entropy
of 0 at roughly 1300 traces. This represents a significant
improvement over the more than 9,000 traces required for a
successful attack using only the CNN, or more than 10 000
traces required using TA or MLP. As demonstrated in [12], the
CAE in their work needs approximately 800 traces to converge
to a value of 0. However, the desynchronization CAE found
in this paper is less computationally expensive having about
97 000 trainable parameters instead of around 2.8 million
trainable parameters. Furthermore the automated search gets
close in performance without the need for the researcher to
spend valuable time searching.

3) Random Delay Interrupts: The Activation function for
the RDI CAE found by Optuna is Selu, the optimizer Adam
and number of epochs 161. In Fig. 6 (c) we see that in
combination with the CNN as attack model it manages to
converge to a guessing entropy of 0 at about 1500 traces.
This is again a great result quite similar to the network of
[12] which achieved a guessing entropy of 0 at approximately
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Fig. 3: Results for the countermeasure Gaussian noise (CAE trained 25 epochs)
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Fig. 4: Results for the countermeasure Gaussian noise (CAE trained 100 epochs)
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Fig. 5: Results for the countermeasure: Desynchronization

1300 traces. A CNN, MLP or TA on their own do not seem
to display any trend towards a GE of 0. This time around the
CAE architectures have some common grounds such as the
amount of layers and both have the same amount of total max
pool when all pool layers are multiplied. Thus the architecture
found here has similar results but was found in an automated
process eliminating the need for the researcher to put time in
manual searching.

As to be expected when finding a CAE architecture for the
desynchronization countermeasure, a small network suffices in

giving good results. The number of filters, dilation pool size,
dense nodes as well as the amount of layers all seem to be
at the lower end of their range. This may be explained due
to the values of the trace being moved as a group, avoiding
the need to filter individual values or parts of individual
values. The only parameter which stands out is kernel size,
this is likely because a larger kernel can shift values at
greater distances, thus improving reconstruction of heavily
desynchronized traces.

Both the Gaussian noise CAE and the RDI CAE have bigger
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Fig. 6: Results for the countermeasure: Random Delay Interrupts

TABLE IV: Random Delay Interrupts CAE architecture

Layer No. filters Dilation Kernel size Pool No. neurons
Conv 26 1 1 1 -
Conv 242 2 14 5 -
Conv 228 2 13 1 -
Conv 107 2 13 1 -
Conv 96 2 16 1 -
Conv 39 3 6 7 -
Flatten - - - - -
Dense - - - - 512
Dense - - - - 780
Reshape - - - - -
Conv 39 2 12 7 -
Conv 96 2 2 1 -
Conv 107 4 16 1 -
Conv 228 2 7 1 -
Conv 242 2 3 5 -
Conv 26 3 13 1 -

architectures expressing the need for more processing that
comes with these countermeasures. Both are at the top of the
range with regards to layers and may thus benefit from even
more layers. In addition to this in both CAEs the kernel size
and dilation touch the upper limits in some layers which may
indicate it could benefit of bigger kernels and larger dilation.
Again similarity is seen in the pool layers where both networks
stay far away from the upper boundaries. The main difference
seems to be in the number of filters where the Gaussian noise
CAE stays clear of the upper bounds, the RDI CAE comes
close and thus may benefit of even more filters per layer.

V. CONCLUSION

Based on our results we conclude that the best optimizer for
CAEs in this setting is Adam. As for the activation function,
both Relu and Selu work well depending on the counter-
measure. Finally, epochs seem to be a different matter as
performance improved with increased epochs in the Gaussian
noise setting. The validation loss remaining nearly constant in
all experiments suggests that as the CAE training continues,
the reconstructed traces do not become more similar to the raw
traces. However, attack improvements indicate that something
positive is happening. Longer training possibly causes the

most important features to become more prominent in the
reconstructed traces due to the compression in the latent space.

Our results further show the hyperparameter space needed
for CAEs in Side-Channel Attacks differ per countermeasure.
Where one layer suffices for desynchronization, RDI and
Gaussian noise benefit from six or possibly more layers. These
differences are seen in nearly all hyperparameters except for
the kernel size which is on the upper side of the boundary set
at 16 on all three countermeasures. The results of this work
may be used as guidance for researchers who want to perform
a hyperparameter search of CAEs for Side-Channel Attacks,
and could be partially generalized to any model which utilizes
a convolutional layer to process the traces.

VI. FUTURE WORK

In future research, more countermeasures will be tested
as well as variable key encryption to further generalize the
findings of this paper. Another interesting research direction
to be explored is the use of different pruning and sampling
strategies. Furthermore, future research should attempt to
satisfy the restraint formula in (5) by choosing Slatent or
Nfilter0 first instead of

∏n
i=1 Spool,i.

In this work validation loss is the metric used to evaluate
how successful the CAE hyperparameter settings were. An-
other interesting research direction is to explore the use of
other metrics, such as guessing entropy. To make this possible
though, either innovative solutions would have to be found
to decrease search and attack time such as pre-training the
attack models or more computational power and time are
required compared to what is currently done by the research
community.

Finally future research should address the validation loss
problem to further verify the findings of this work. Research on
why networks can still improve after more epochs even though
the validation loss does not improve or even deteriorates may
help find better metrics, design better loss functions and so
help build better neural networks.
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