667 research outputs found

    Determinants of precocious B-cell aging in European adolescents living with perinatally acquired HIV-1 after over 10 years of suppressive therapy [preprint]

    Get PDF
    HIV infection results in a state of chronic immune activation leading to premature immune aging, B-cells dysfunction, that persists despite prolonged virological suppression. In this scenario, adolescence living with perinatally acquired HIV (PHIV), deserve a peculiar attention since potentially exposed for their entire life to chronic immune activation. Here we identified determinants of precocious aging B cells in 40 PHIV undergoing suppressive antiretroviral therapy (ART) for median 13.5 years. All individuals started ART by 2nd year of life and achieved virus suppression within the 1st year of ART, with majority of patient maintaining suppression until analysis and 5/40 experiencing viral Spike (transient elevation of HIV-1 VL, 50-999 copies/ml). We employed a multiomics approach including deep immunological B and T cell phenotype in PBMC, with aging B cells defined by the expression of T-bet and CD11c; plasma proteomics analysis by mass spectrometry and serum level of anti-measles antibodies as correlates of humoral response. We found that individuals with expansion of aging B cell, defined by the expression of T-bet+CD11c+, were those starting treatment later, presenting detectable levels of cell-associated HIV-1 RNA, history of Spikes, and a higher frequency of exhausted T-cells, including those expressing PD-1, LAG3, TIGIT. Accordingly, the proteomic analysis revealed that subjects with expansion of aging B cells and exhausted T cells had enrichment of proteins involved in immune inflammation and complement activation pathways, such as CLU and APCS which are also involved in tumor progression. Signs of precocious aging were associated with a reduced capacity to maintain virological memory against measles vaccination. To our knowledge, this is the first study focusing on precocious B-cell aging and dysfunctionality in PHIV with long-term virological suppression. Our experimental strategy enabled identification of clinical, viral, cellular and plasma soluble markers associated with B-cells aging. Our results pave the way to further define risk of disease progression or lymphoproliferative disorders in PHIV

    Experimental Investigation and Thermodynamic Assessment of Phase Equilibria in the PLLA/Dioxane/Water Ternary System for Applications in the Biomedical Field

    Get PDF
    Fundamental understanding of thermodynamic of phase separation plays a key role in tuning the desired features of biomedical devices. In particular, phase separation of ternary solution is of remarkable interest in processes to obtain biodegradable and biocompatible architectures applied as artificial devices to repair, replace, or support damaged tissues or organs. In these perspectives, thermally induced phase separation (TIPS) is the most widely used technique to obtained porous morphologies and, in addition, among different ternary systems, polylactic acid (PLLA)/dioxane/water has given promising results and has been largely studied. However, to increase the control of TIPS-based processes and architectures, an investigation of the basic energetic phenomena occurring during phase separation is still required. Here we propose an experimental investigation of the selected ternary system by using isothermal titration calorimetric approach at different solvent/antisolvent ratio and a thermodynamic explanation related to the polymer-solvents interactions in terms of energetic contribution to the phase separation process. Furthermore, relevant information about the phase diagrams and interaction parameters of the studied systems are furnished in terms of liquid-liquid miscibility gap. Indeed, polymer-solvents interactions are responsible for the mechanism of the phase separation process and, therefore, of the final features of the morphologies; the knowledge of such data is fundamental to control processes for the production of membranes, scaffolds and several nanostructures. The behavior of the polymer at different solvent/nonsolvent ratios is discussed in terms of solvation mechanism and a preliminary contribution to the understanding of the role of the hydrogen bonding in the interface phenomena is also reported. It is the first time that thermodynamic data of a ternary system are collected by mean of nano-isothermal titration calorimetry (nano-ITC). Supporting Information is available

    Central Serous Chorioretinopathy in a 14-year-old atopic boy: a case report

    Get PDF
    Background: Corticosteroids are widely used in medicine. Few cases of central serous chorioretinopathy (CSC) have been reported following topical corticosteroid administration. We describe the first case of pediatric CSC related to topical corticosteroid administration. Case presentation: A 14-year-old boy presented with decreased vision, pigment epithelial detachments, and serous retinal detachments in the right eye after starting treatment for atopic dermatitis with Betamethasone Valerate 0.1% topical ointment. His condition resolved 2 weeks after discontinuing the steroid and administering Bromfenac 0.9 mg/ml eyedrops. Conclusions: Although the pathogenesis of CSC is poorly understood, ophthalmologists should be informed about the potential link between CSC and topical corticosteroid treatment, and they should be aware that CSC might, albeit infrequently, affect children

    MicroRNAs in melanoma development and resistance to target therapy

    Get PDF
    microRNAs constitute a complex class of pleiotropic post-transcriptional regulators of gene expression involved in the control of several physiologic and pathologic processes. Their mechanism of action is primarily based on the imperfect matching of a seed region located at the 5' end of a 21-23 nt sequence with a partially complementary sequence located in the 3' untranslated region of target mRNAs. This leads to inhibition of mRNA translation and eventually to its degradation. Individual miRNAs are capable of binding to several mRNAs and several miRNAs are capable of influencing the function of the same mRNAs. In recent years networks of miRNAs are emerging as capable of controlling key signaling pathways responsible for the growth and propagation of cancer cells. Furthermore several examples have been provided which highlight the involvement of miRNAs in the development of resistance to targeted drug therapies. In this review we provide an updated overview of the role of miRNAs in the development of melanoma and the identification of the main downstream pathways controlled by these miRNAs. Furthermore we discuss a group of miRNAs capable to influence through their respective up- or down-modulation the development of resistance to BRAF and MEK inhibitors

    A Rapid ELISA Method to Improve the Automated Test Throughput

    Get PDF
    In ELISA, ligand is commonly adsorbed to the plastic surface through non-covalent bonds between the hydrophobic regions of the ligand and the plastic surface. Thus, all the reactions occur in a heterogeneous phase, with some reactants in solution, and some immobilized. As a result, the diffusion constant of immobilized reagents is zero and the overall reaction speed is low. With the proposed new approach the first step occurs in a homogeneous phase, aimed at speeding up ELISA procedure especially to easily adapt it to robotic systems. Conventional tests usually may take up to 5 hours. Our “rapid ELISA” approach considerably reduces this time to less than 30 minutes allowing the method to be more suitable for automation. The rapid ELISA has been set up to analyze samples coming from animal studies for vaccine development purposes. In particular, it was applied to quantitate antibodies specific for the Outer Membrane Vesicle of Neisseria meningitidis group B and Influenza virus antigens (H1N1; H3N2; B). Due to its high flexibility, this rapid ELISA can be used to detect a wide range of antibodies raised against a wide range of antigens

    Mucosal delivery of anti-inflammatory IL-1Ra by sporulating recombinant bacteria

    Get PDF
    BACKGROUND: Mucosal delivery of therapeutic protein drugs or vaccines is actively investigated, in order to improve bioavailability and avoid side effects associated with systemic administration. Orally administered bacteria, engineered to produce anti-inflammatory cytokines (IL-10, IL-1Ra), have shown localised ameliorating effects in inflammatory gastro-intestinal conditions. However, the possible systemic effects of mucosally delivered recombinant bacteria have not been investigated. RESULTS: B. subtilis was engineered to produce the mature human IL-1 receptor antagonist (IL-1Ra). When recombinant B. subtilis was instilled in the distal colon of rats or rabbits, human IL-1Ra was found both in the intestinal lavage and in the serum of treated animals. The IL-1Ra protein in serum was intact and biologically active. IL-1-induced fever, neutrophilia, hypoglycemia and hypoferremia were inhibited in a dose-dependent fashion by intra-colon administration of IL-1Ra-producing B. subtilis. In the mouse, intra-peritoneal treatment with recombinant B. subtilis could inhibit endotoxin-induced shock and death. Instillation in the rabbit colon of another recombinant B. subtilis strain, which releases bioactive human recombinant IL-1β upon autolysis, could induce fever and eventually death, similarly to parenteral administration of high doses of IL-1β. CONCLUSIONS: A novel system of controlled release of pharmacologically active proteins is described, which exploits bacterial autolysis in a non-permissive environment. Mucosal administration of recombinant B. subtilis causes the release of cytoplasmic recombinant proteins, which can then be found in serum and exert their biological activity in vivo systemically

    Network Sensitivity of Systemic Risk

    Get PDF
    A growing body of studies on systemic risk in financial markets has emphasized the key importance of taking into consideration the complex interconnections among financial institutions. Much effort has been put in modeling the contagion dynamics of financial shocks, and to assess the resilience of specific financial markets - either using real network data, reconstruction techniques or simple toy networks. Here we address the more general problem of how shock propagation dynamics depends on the topological details of the underlying network. To this end we consider different realistic network topologies, all consistent with balance sheets information obtained from real data on financial institutions. In particular, we consider networks of varying density and with different block structures, and diversify as well in the details of the shock propagation dynamics. We confirm that the systemic risk properties of a financial network are extremely sensitive to its network features. Our results can aid in the design of regulatory policies to improve the robustness of financial markets

    A Shared-Control Teleoperation Architecture for Nonprehensile Object Transportation

    Get PDF
    This article proposes a shared-control teleoperation architecture for robot manipulators transporting an object on a tray. Differently from many existing studies about remotely operated robots with firm grasping capabilities, we consider the case in which, in principle, the object can break its contact with the robot end-effector. The proposed shared-control approach automatically regulates the remote robot motion commanded by the user and the end-effector orientation to prevent the object from sliding over the tray. Furthermore, the human operator is provided with haptic cues informing about the discrepancy between the commanded and executed robot motion, which assist the operator throughout the task execution. We carried out trajectory tracking experiments employing an autonomous 7-degree-of-freedom (DoF) manipulator and compared the results obtained using the proposed approach with two different control schemes (i.e., constant tray orientation and no motion adjustment). We also carried out a human-subjects study involving 18 participants in which a 3-DoF haptic device was used to teleoperate the robot linear motion and display haptic cues to the operator. In all experiments, the results clearly show that our control approach outperforms the other solutions in terms of sliding prevention, robustness, commands tracking, and user’s preference

    Investigation of current noise in underdamped Josephson devices by switching current measurements

    Get PDF
    AbstractExperimental measurements on critical current noise in underdamped niobium based Josephson devices by a technique based on the switching current measurements is reported. By sweeping the junction with a current ramp we measure the critical current switching as a function of the time using the standard time of flight technique. In such a way it is possible to obtain the critical current fluctuations ΔIc=Ic(t)-<Ic(t)> and the relative standard deviations which corresponds to the root square of the current fluctuation power. Pointing at the white noise fluctuations (above few Hz) and taking into account the physical frequency of the device, it is possible to evaluate the power spectral density of the critical current. The analysis has involved high quality underdamped Josephson junctions having an area ranging from (4x4) μm2 to (40x40) μm2 in the temperature range from 4.2K to few tenth of mK. These measurement provide very useful information about the intrinsic noise of Josephson devices involving SQUIDs and qubits
    • …
    corecore