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 93 

Abstract 94 

 95 

HIV infection results in a state of chronic immune activation leading to premature immune aging, B-96 

cells dysfunction, that persists despite prolonged virological suppression. In this scenario, 97 

adolescence living with perinatally acquired HIV (PHIV), deserve a peculiar attention since 98 

potentially exposed for their entire life to chronic immune activation. Here we identified determinants 99 

of precocious aging B cells in 40 PHIV undergoing suppressive antiretroviral therapy (ART) for 100 

median 13.5 years. All individuals started ART by 2nd year of life and achieved virus suppression 101 

within the 1st year of ART, with majority of patient maintaining suppression until analysis and 5/40 102 

experiencing viral Spike (transient elevation of HIV-1 VL, 50-999 copies/ml). We employed a multi-103 

omics approach including deep immunological B and T cell phenotype in PBMC, with aging B cells 104 

defined by the expression of T-bet and CD11c; plasma proteomics analysis by mass spectrometry and 105 

serum level of anti-measles antibodies as correlates of humoral response. We found that individuals 106 

with expansion of aging B cell, defined by the expression of T-bet+CD11c+, were those starting 107 

treatment later, presenting detectable levels of cell-associated HIV-1 RNA, history of Spikes, and a 108 

higher frequency of exhausted T-cells, including those expressing PD-1, LAG3, TIGIT. Accordingly, 109 

the proteomic analysis revealed that subjects with expansion of aging B cells and exhausted T cells 110 

had enrichment of proteins involved in immune inflammation and complement activation pathways, 111 

such as CLU and APCS which are also involved in tumor progression. Signs of precocious aging 112 

were associated with a reduced capacity to maintain virological memory against measles vaccination. 113 

To our knowledge, this is the first study focusing on precocious B-cell aging and dysfunctionality in 114 

PHIV with long-term virological suppression. Our experimental strategy enabled identification of 115 

clinical, viral, cellular and plasma soluble markers associated with B-cells aging. Our results pave the 116 

way to further define risk of disease progression or lymphoproliferative disorders in PHIV. 117 
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Author summary  118 

 119 

Despite a successful antiretroviral therapy (ART), adolescence living with perinatally acquired HIV 120 

(PHIV) experience B-cells dysfunction, including loss of vaccine-induced immunological memory 121 

and higher risk of developing B-cells associated tumors. It is thus paramount to define novel and 122 

precise correlates of precious aging B cell for the definition of novel therapeutic strategies. Here, we 123 

studied 40 PHIV who started treatment by 2nd year of life and maintain virological suppression for 124 

13.5 years, with 5/40 patients experiencing transient elevation of the HIV-1 load in the plasma 125 

(Spike). We applied a multi-omics approach including immunological B and T cell phenotype, plasma 126 

proteomics analysis and serum level of anti-measles antibodies as functional correlates of vaccine-127 

induced immunity. We found that levels of aging B cells were positively associated with age at ART 128 

start, cell associated HIV-1 RNA (caHIV-1 RNA) and the presence of Spikes. Individuals with 129 

increased proportions of aging B cells had concomitant expansion of exhausted T cells and were 130 

unable to maintain vaccine-induced immunity over time. B-cell aging, and T-cell exhaustion were 131 

also associated with proteins involved in immune inflammation. The factors found here to be 132 

associated with aging B-cell could inform further therapeutic studies. 133 

 134 

Short title: Determinants of aging B-cells in PHIV following 10yr of suppressive ART 135 

Word count abstract: 310 136 

Word count author summary: 193 137 

 138 

Keywords: perinatal HIV/AIDS, immune activation, late ART, aging B-cells, exhausted T-cells, 139 
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INTRODUCTION  142 

 143 

HIV-1 replication is associated with abnormalities in all major lymphocyte populations, including the 144 

B-cell compartment which results in hyperactivation and exhaustion (1-5). While early antiretroviral 145 

therapy (ART)-initiation partially averts this detrimental condition (6), late ART initiation during the 146 

chronic stage of HIV infection results in precocious aging of the immune system with irreversible 147 

loss of memory B cells and expansion of exhausted B cell subsets including activated memory (AM), 148 

double negative (DN)- and tissue-like memory B cells (TLM)(1, 4, 6, 7). The adhesion molecule 149 

CD11c and the transcription factor T-bet identify a discrete B cell subset, induced by innate activation 150 

and maintained by chronic inflammation or antigen stimulation, may play a detrimental role in 151 

chronic HIV infection (8).  Overall, chronic B cell activation observed during HIV infection has been 152 

related to a reduction of functional resting memory B cells resulting in precocious waning of routine 153 

vaccine-induced antibody titers (9-11) and increased risk of age-associated pathologies (12, 13), 154 

including malignancies (14). Indeed, a B cell lymphoproliferative disorder such as Hodgkin's 155 

Lymphoma has remained stable or even increased in HIV-positive adults since the introduction of 156 

ART and is ~11-fold higher than in the HIV-negative population (15). In this context, perinatally HIV 157 

infected children deserve particular attention, given their life-long exposure to chronic immune 158 

activation. It remains unknown whether early ART initiation during acute HIV infection followed by 159 

long-term virological suppression could prevent precocious aging of the B-cell compartment. 160 

Longitudinally well characterized, adolescents living with perinatally acquired HIV-1 (PHIV) with 161 

sustained and prolonged virological suppression represent a unique opportunity to investigate this 162 

scientific question. Indeed, children who started ART in infancy are rarely able to achieve and 163 

consistently maintain viral control for long periods. In the present work, we attempt to identify 164 

determinants of B-cell activation and dysfunctionality in European PHIV who have been treated with 165 

ART for >13 years and have a documented history of virus suppression. We performed deep B and 166 
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T cell phenotyping with a particular focus on factors associated with lymphocyte aging and extensive 167 

mass spectrometry-based plasma proteomic analysis. Serum levels of anti-measles antibodies (Abs) 168 

were analyzed as correlates of functional humoral immune response. 169 

 170 

RESULTS 171 

 172 

Study cohort 173 

Patient characteristics are shown in Table 1. Overall, we analyzed 40 PHIV (males 13/40, 32.5%), 174 

that started ART at a median 4.1 months (IQR 0.3-6.2), achieved virological suppression after median 175 

4.69 (2.52–6.26) and were successfully on ART for median 13.5 years (8.1-16.5). We measured cell 176 

associated (ca)HIV-1 DNA (caHIV-1 DNA median 48.8 copies/106 PBMC), caHIV-1 RNA in the 177 

Pol and LTR regions. Overall, 5/40 (13%) had experienced a Spike in HIV-1 Viral Load (HIV-1 VL 178 

between 400-999 c/mL, returning to VL <50 c/ml at next blood draw) at some point in their lives 179 

(Table 1, Fig.1). 180 

 181 

 182 

 183 

 184 

 185 

 186 

 187 

 188 

 189 

 190 

 191 
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 8 

Table 1. Characteristics of the study population 192 

 CARMA COHORT 

N 40 

Gender M (%)  13/40 (32.5%) 

At ART start  

Age median months (IQR) 4.1 (0.3-6.2) 

CD4+ T cells percentage (IQR) 30.5 (19.2-42.5) 

Plasma HIV-1 RNA median copies/µL (IQR) 5.3 (4.1-5.7) 

Time to suppression median months (IQR) 4.69 (2.52–6.26) 

At analysis  

Age (years) 13.5 (8.7-16.6) 

Time on ART (years) 13.5 (8.1-16.5) 

CD4+ T cells percentage (IQR) 41.0 (33.8-46.2) 

Spike yes or no, n (%) 5/40 (13%) 

caHIV-1 DNA (copies/106 PBMCs) 48.4 (6.7-112.5) 

 caHIV-1 RNA (Pol) (copies/106 PBMCs) 0.0 (0.0-1.4) 

caHIV-1 RNA (LTR) (copies/106 PBMCs) 2.7 (0.0-44.1) 

anti-Measles IgG, median IU/l (IQR) 617 (411-936) 

anti-Measles IgG, median years from vaccination (IQR) 5 (2-8) 

 193 

 194 

Time of ART-start and caRNA are associated with levels of aging T-bet+ CD11c+ 195 

B cells  196 

We performed an extensive immune phenotyping focusing on the B-cell compartment (gating 197 

strategy shown in Fig.1A). We found that the proportion of DN and AM expressing both T-bet and 198 

CD11c were positively associated with the time of ART initiation, with expansion of T-bet+CD11c+ 199 
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DN B cells (p=0.03, Fig. 1B) and T-bet+CD11c+ AM B cells (p=0.02, Fig.1C) in those with delayed 200 

ART initiation. We further explored if the levels of aging in the B-cell compartment could be 201 

associated with the HIV-reservoir. Whereas caHIV-1 DNA showed no association with any evidence 202 

of aging B cell compartment, both total caHIV-1 RNA (LTR) and unspliced caHIV-1 RNA (Pol) 203 

demonstrated a positive association with the aging-B cells (Fig. 1D). caHIV-1 RNA was associated 204 

with B cells, AM and DN expressing T-bet+ alone or together with CD11c, with higher levels of these 205 

B-cell populations present in individuals with detectable ongoing virus expression (Fig. 1E, 1F). We 206 

further stratified the study participants by those who did (group I= 5) or did not (group II= 35) 207 

experience Spikes during their lifetime (Fig. 1g). Group I had significantly higher levels of AM T-208 

bet+ cells compared to group II (p=0.04, Fig. 1g). These data showed that age at ART initiation is 209 

strongly correlated with levels of B-cell aging in PHIV and that ongoing HIV-1 replication is 210 

associated with precocious aging.  211 

 212 

Fig.1 Time of ART initiation and cell associated HIV-1 RNA (caRNA) are associated with 213 

expansion of aging B cells. Gating strategy is shown in a); in b) and c) correlations between aging B 214 

cells and age at ART start are shown; d) correlation plot between viral correlates of recent replication 215 

and aging B-cells / exhausted T-cells are shown; differential analysis between levels of aging B cells 216 

and caRNA or SPIKE being detected vs non-detected is shown in e), f), g), p values are calculated 217 

using Mann Whitney test. Spearman p values are shown in b), c), and d). Significance was set at 218 

p>0.05. DN= double negative; AM= activated memory; MFI= mean fluorescent intensity.  219 

 220 

Individuals with expansion of aging B cells have elevated levels of exhausted T-221 

cells 222 

We then explored whether the levels of aging within the B-cell compartment corresponded to elevated 223 

levels of exhausted T-cells. Within the aging B-cells we included T-bet+CD11c+, T-bet+ only B-cells, 224 
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or levels of T-bet (MFI) within the whole B compartment as well as within the ‘namely aging’ 225 

phenotypes (AM and DN). In assessing the T-cell compartment, we focused on populations 226 

expressing exhaustion biomarkers (Fig. 2). Overall, correlation analysis demonstrated direct positive 227 

association between B and T cells, suggesting that a certain extent of immune aging/exhaustion 228 

persisted in different cellular populations, even many years after successful treatment and virological 229 

control. AM T-bet+CD11c+ was associated with PD-1 expression on CD4 effector (p=0.006) and T 230 

follicular helper cells (Tfh) (p=0.049) cells. Furthermore, TIGIT expression on CD4 subset and on 231 

Tfh showed a strong positive association with all the aging B-cell populations (Fig. 2B). Similarly, 232 

LAG3 expression on transitional memory (TTM) demonstrated a strong association with AM 233 

(p=0.002) and DN (p=0.003) expressing both T-bet and CD11c. These data demonstrated that 234 

premature aging and exhaustion persists simultaneously in both B and T cell compartments, even 235 

after >10 years of ART.      236 

 237 

Fig.2 Levels of exhausted T-cells are positively associated with levels of aging B-cells. In a) a 238 

cartoon showing the main findings of the figures are pictured. In b) Heatmap plot showing Spearman 239 

correlations between exhausted T-cells and levels of aging B-cells. Only significant correlations are 240 

shown with red indicating positive correlations and Blue the negative ones. The colored scale going 241 

between 1 and -1 indicates the rho values. DN= double negative; AM= activated memory. 242 

Significance was set at p<0.05. 243 

 244 

Proteomic profiles associated with precocious immune aging      245 

To assess whether humoral/soluble factors might correspond to aging/exhaustion phenotypes, we 246 

performed liquid chromatography/mass spectrometry-based proteomics, detecting 338 plasma 247 

proteins (16). The distinct immunological, virological, and clinical features associated with immune 248 

aging were correlated to the whole plasma proteomic profile (Supp. Fig 1). Two distinct clusters were 249 

initially identified which were negatively (36 proteins) or positively (37 proteins) associated with 250 
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features of immune exhaustion (Fig. 3A). Such protein clusters were further interrogated for their 251 

biological role by enrichment analysis on Reactome and Gene Ontology (GO) biological processes 252 

databases (Fig. 3B).  Immune inflammation and complement cascade activation pathways were 253 

enriched in proteins positively associated with features of immune aging (bottom panels, Fig. 3B and 254 

3C). Indeed, amyloid P component in serum (APCS) and clustering (CLU), both involved in 255 

apoptotic, aging and tumor progression processes (GO:0002673) together with complement cascade 256 

molecules such as C5, CFI, C4BPA, CFB (R-HSA-173623) were positively associated to selected 257 

features of immune aging (Supplementary Table 1). In addition, proteins of light and heavy chain of 258 

immunoglobulins, involved in humoral immune response pathway (GO:0002920) such as IGLV1-259 

47, IGHV4-34, IGLV2-23, IGHV3-48 were positively associated with immune aging. Enrichment 260 

analysis performed on negatively correlated proteins, showed no association with inflammatory 261 

pathways but only with processes involved in coagulation. Indeed, proteins such as APOH, 262 

SERPINF2, HRG involved in pathways of negative regulation of blood coagulation (GO:0030195) 263 

and platelet degranulation (R-HSA-76002) were negatively associated with features of aging 264 

(Supplementary Table 1).  265 

 266 

Fig 3. Association between proteomic profiling and levels of aging B-cells and exhausted T-cells. 267 

A) Heatmap plot showing Spearman correlations between the 13 unfunctional features values and the 268 

abondance of the 73 plasma proteins belong to the two clusters identified in correlation matrix with 269 

all 338 proteins. Red indicates positive correlations and Blue negative ones. Bubble plots showing 270 

the top 10 Reactome pathways (B) and GO Biological Process (C) significantly enriched (Adjusted 271 

p-value < 0.05) in proteins positively (Pos) and negatively (Neg) correlated with the 13 unfunctional 272 

features. The proteins were separated into positively and negatively correlated based on the two 273 

clusters showed in the correlation heatmap in panel A. Colors are related at the log10 adjusted p-value 274 

values and the circle diameter are related at the number of proteins for each term. Significance was 275 

set at p<0.05. 276 
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Expansion of aging B-cells is associated with B-cell dysfunctionality in PHIV  277 

We further assessed whether the presence of aging B-cells could affect the functionality of the B-cell 278 

compartment to maintain immunological memory against vaccinations, such as measles. 279 

Interestingly, the proportion of B-cells expressing the senescence marker T-bet, demonstrated 280 

negative association with the capacity of B-cells to maintain immunological memory to measles 281 

vaccination (Fig. 4A). Higher levels of CD19+CD10-T-bet+ B cells were associated with reduced 282 

plasma concentrations of anti-measles specific IgG (Fig. 4B, rho=-0.338, p=0.03546). Of note, his 283 

association was strong regardless of the time of ART initiation (Fig. 4C) or timing from the last 284 

booster vaccination (Fig.4D).  285 

 286 

Fig 4. Association between aging B-cells and anti-measles humoral response. A) Heatmap plot 287 

showing Spearman correlations between aging B-cells and anti-measles plasma IgG titers (IU/ml). 288 

Red indicates positive correlations and Blue negative ones. B) Spearman correlation between 289 

CD19+CD10- B-cells T-bet+ and anti-Measle plasma IgG titers, with rho and p defining the statistical 290 

significance. C) and D) Spearman correlation between anti-Measle plasma IgG titers and Age at ART 291 

in m and years from measles vaccination, respectively, with rho and p defining the statistical 292 

significance. Color dots show the distribution of CD19+CD10- B-cells T-bet+. Significance was set 293 

at p<0.05. 294 

 295 

DISCUSSION 296 

 297 

To our knowledge, ours is the first long-term follow-up study focusing on precocious B-cell 298 

aging in PHIV with long-term sustained virological suppression. We defined novel cellular and 299 

molecular factors associated with precocious aging in the B-cell compartment. We found that age at 300 

ART initiation, HIV caRNA, levels of exhausted T-cells and specific proteomic profiles demonstrated 301 
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a strong and positive association with the levels of aging B-cells expressing T-bet alone or together 302 

with CD11c. The expansion of precocious aging B-cells appeared to have a direct impact on the 303 

ability of these patients to maintain vaccine induced immunity over time.  304 

PHIV children, particularly younger ones, are immunologically distinct from adults including 305 

with respect to plasticity and immune regulation, resulting in a lower immune activation state (17). 306 

Since chronic immune activation and aging in treated HIV infection is probably driven by residual 307 

HIV replication (18, 19), it could be hypothesized that a prompt initiation of ART early in life 308 

followed by a sustained suppression of the viral replication may be able to minimize this (20). In this 309 

work, we show that  perinatally infected adolescents growing with HIV present higher frequency of 310 

aging-B cells directly related to time of ART initiation, despite a history of continuous viral 311 

suppression, documented with at least four HIV-RNA PCR tests per year for over 10 years. 312 

We next explored the virological determinants of the expansion of aging B-cell populations 313 

in those with PHIV. Total HIV-1 DNA did correlate with markers of B-cells aging, probably 314 

reflecting the fact that the contribution of the replication-competent virus is diluted within the entire 315 

integrated virus reservoir, which is mainly inactive (21). We thus further explore the markers of recent 316 

virus replication. Both spliced and unspliced HIV-1 caRNA were (AB) strongly associated with levels 317 

of aging B-cells. Spliced HIV-1 RNA may reflect abortive HIV-replication, with only a minor part 318 

being released as virus protein or exosome-associated fragments of RNA that can still trigger immune 319 

activation (22). In contrast, the unspliced HIV-1 RNA is thought to predict the replicative-competence 320 

of the virus reservoirs and has been associated with virologic failure and markers of immune 321 

activation in elite controllers (20, 23, 24), recently proposed as a predictive marker of viral rebound 322 

(25). In our cohort, aging B-cells were not only associated with caRNA, but frequency of aging B-323 

cells was higher in those PHIV adolescents who experienced HIV spikes in absence of virologic 324 

failure. The association between expansion of aging B-cell, caRNa and viral Spikes is consistent with 325 

the hypothesis that precocious aging in the B cell compartment is dependent on HIV-1 replication 326 
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and virus particle release, which fuels chronic immune activation, exhaustion and ultimately aging 327 

(26). 328 

Multiple mechanisms likely underpin the association between caHIV-1 RNA and aging B-329 

cells: 1) HIV-1 particles can interact directly with B cells surface-bound via the CD21 receptor with 330 

complement 3 (C3) fragment both in peripheral blood and lymph nodes of HIV-1 patients (Kardava 331 

L. et al. 2018); and 2) B-cells may function as Antigen Presenting Cells (APC) taking direct contact 332 

with follicular T-cells to trigger an anti-HIV-response. In case of HIV-persistence, both B and T cells 333 

should experience a state of chronic immune activation resulting in expansion of signatures associated 334 

with precocious aging (27, 28). Consistent with this hypothesis, our results showed that aging B-cells 335 

existed simultaneously with T-cell exhaustion. T-bet+CD11c+ B-cells showed strong association 336 

with T cells expressing PD-1, TIM-3 and LAG-3 which are inhibitory receptors that are found to be 337 

increased on the T-cell surface as a consequence of persistent activation and described as markers of 338 

cells exhaustion (29). Furthermore, T-bet+CD11c+ aging B-cells were associated with exhausted Tfh 339 

in accordance with other models of chronic antigenic stimulation such as auto-immune diseases (30). 340 

In fact, the excessive T-bet+CD11c+  age-associated B cells (ABCs) (31) not only to contribute to 341 

the production of auto-Abs but also to promote aberrant Tfh cell differentiation and consequently 342 

compromising affinity-based germinal center B-cell selection and Ab-affinity maturation in lupus 343 

mouse models.   344 

There are very likely other modes of soluble factor-receptor interactions which can regulate 345 

B cells during HIV-1 infection and may contribute to progression to aging of B-cell compartment 346 

(32). To assess this possibility, we analyzed proteomic profiles of our patients, defining at the plasma 347 

level the status of immune activation and precocious aging found in B and T cell phenotype analysis. 348 

Proteins positively associated with features of HIV-related immune exhaustion were mainly involved 349 

in pro-inflammatory and complement activation processes. While it was previously shown that the 350 

early initiation of suppressive ART over the acute phase of the infection in HIV-infected adults 351 

reduced aspects of the immune activation (18, 19), we here show the persistence of bio humoral 352 
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correlates of exhaustion and aging in PHIV with a history of long-term viral suppression (>10 years). 353 

Specifically, APCS and CLU, both involved in processes of cell apoptosis, inflammation, and 354 

lymphoproliferative processes (33-35) were positively associated to caHIV-RNA, immune 355 

checkpoint-inhibitors (TIGIT and PD1 on T cells) and exhausted B cells (T-bet+CD11c+ B cell 356 

subsets). Accordingly, such proteins were shown to be higher in virally controlled HIV infected adult 357 

experiencing a poor immune reconstitution and disease progression despite viral control (36).  358 

Proteomics further showed that complement cascade activation pathway was enriched in 359 

proteins positively associated with immunological aging features including CLU. As previously 360 

demonstrated, the complement activation contributes to a chronic pro-inflammatory environment 361 

even in well-controlled HIV infected adults (37). Whereas the activation of the complement cascade 362 

during acute HIV infection is largely via activation of the classical pathway (36, 38), recent studies 363 

highlight how complement factors bind IgG3 on exhausted B cell subsets (TLM) in HIV-positive 364 

individuals (32, 39). In line with this evidence, our results showed a positive association of both 365 

caHIV-RNA and aging B cell subsets (T-bet+CD11c+ DN and AM) with plasma complement 366 

cascade proteins. Correlation analysis further revealed an association of proteins involved in 367 

coagulation processes with features of immune aging. As previously shown in adults, a pro-368 

coagulative imbalance, partially resolved by ART initiation during the acute infection (18, 19) and 369 

persisting over time in HIV infected adults (40), was confirmed in our cohort where a regulation of 370 

fibrinolysis was negatively associated with features of aging in both T and B cell compartment. 371 

Overall, plasma proteomic profiling may suggest that the persistence of complement cascade 372 

perturbation, rather than inflammatory and coagulation proteins may contribute to B -cell exhaustion 373 

and signs of precocious aging in long term virally controlled (>10 years) PHIV. 374 

 Finally, we explored if the presence of this expanded aging B-cell population could reflect an 375 

impairment of the maintenance of the humoral response towards childhood vaccination, such as 376 

measles immunization which should be maintained throughout life in physiological conditions. We 377 

found that levels of T-bet on the global B-cell population were negatively associated with anti-378 
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measles serum IgG. These data are not due to the natural Ab decay because patients were analyzed at 379 

similar median years from vaccination. Our observations raise the possibility that the maintenance of 380 

specific Ab titers is related to a better maturation and preservation of the memory B cell compartment 381 

as a direct consequence of an early ART. 382 

In conclusion, our study demonstrated for the first time the impact of a late ART start on B-383 

cell compartment is still visible despite >10 years of suppressive ART. This set of data also suggests 384 

a role of T-bet and CD11c towards the definition of B-cell exhaustion in PHIV and showed that the 385 

subset of T-bet expressing B cells may negatively affect the capacity of B-cell compartment to 386 

maintain a vaccine-induced functional Ab response. Further studies aiming to confirm whether such 387 

multi-omic signatures of aging/inflammation can inform simplified methods to stratify risk of disease 388 

progression or lymphoproliferative disorders in cohorts of long-term suppressed PHIV are needed. 389 

 390 

Limitations of the study 391 

While our study featured multiple strengths, as with all research it also had a number of important 392 

limitations, including: a) the small size of the CARMA cohort limited the power of correlation 393 

analysis to detect associations; it would be interesting to expand the immunological profiling to a 394 

larger cohort; b) the lack of a control group of exposed uninfected HIV individuals and potentially of 395 

another group that started therapy after 2 years of age, to deeply investigate the impact of late ART 396 

start; and c) the cross-sectional study design. 397 

 398 
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MATERIALS AND METHODS 433 

 434 

Ethics statement 435 

This is a multi-center study which include the following institutions: Bambino Gesù Children’s 436 

Hospital (OPBG, Rome, Italy), University of Padua (Padova, Italy), University Hospital 12 de 437 

Octubre (Madrid, Spain), Hospital Gregorio Marañón (Madrid, Spain), Imperial College Healthcare 438 

NHS Trust (London, UK), Great Ormond Street Hospital (London, UK), Brighton and Sussex 439 

University Hospitals (Brighton, UK). Each recruiting sites received approval by local ethic 440 

committees (Foster, Dominguez-Rodriguez et al. 2020). Study participants or their legal guardians 441 

gave written informed consent in accordance with the Declaration of Helsinki. 442 

 443 

Study population 444 

The CARMA (Child and Adolescent Reservoir Measurements on early suppressive ART) cohort is 445 

part of the existing EPIICAL consortium (Early treated Perinatally HIV Infected individuals: 446 

Improving Children’s Actual Life) (41, 42), a multi-center, multi-cohort global collaboration 447 

primarily supported by PENTA foundation (Pediatric European Network for the Treatment of AIDS).  448 

CARMA included 40 perinatally HIV infected children (PHIV) with following inclusion criteria: (1) 449 

start of ART within the 2nd year of life; (2) ≥5 years of age; (3) viral suppression (<400 copies/mL) 450 

achieved in the first 12 months after initiation of ART and maintained for at least 5 years with 4 451 

plasma viral load tests performed each year prior to enrolment; (4) A single viral load between 400 452 

and 1000 c/mL (Spike) is permitted annually returning to less than 50 c/ml on next testing (within 3 453 

months); (5) plasma viral load of <50 HIV-1 RNA copies/ml at enrolment. Wider characteristics of 454 
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participants were described elsewhere (41) and relevant info provided in Table 1. CD4 counts were 455 

collected at the hospital visits and vaccination history was available from patients’ files. 456 

 457 

Samples collection  458 

Plasma samples were obtained by centrifugation of EDTA-blood at 2000xg for 10’ and stored at -459 

80°C until use. Peripheral blood mononuclear cells (PBMCs) were isolated using Ficoll density 460 

gradient centrifugation, resuspended in fetal bovine serum (FBS) supplemented with 10% dimethyl 461 

sulfoxide (DMSO) and stored in liquid nitrogen until use.  462 

 463 

B and T-cell phenotypic analysis 464 

PBMCs from 40 PHIV were thawed, washed, and stained with the LIVE/DEAD fixable BV510 dead 465 

cell stain kit according to manufacturer’s protocol (Life Technologies, Carlsbad, CA), used to assess 466 

viability: positive cells were thus excluded from the analysis as they were considered as dead. For B-467 

cell phenotype, after washing with PBS 10% FBS, cells underwent surface staining with the following 468 

monoclonal antibodies (mAbs, from BD Biosciences): CD3, CD10, CD16 (BV510), CD19 (APC-469 

R700), CD21 (APC), CD27 (FITC), IgD (BV421), IgM (PE-CF594), IgG (BV605), CD11C (PC-7). 470 

Finally, stained cells were resuspended in 1% paraformaldehyde (PFA) and acquired using Stained 471 

cells were acquired on Cytoflex (Beckman Coulter, Brea, CA) and analysed with FlowJo v10.0.8 472 

(Tree Star) software. Following surface staining fixing and permeabilization of cells (BD 473 

permeabilization solution II 1x), cells were stained with an anti T-bet BV650 (04-46, BD). For T-cell 474 

phenotype, LIVE/DEAD Fixable Blue Dead Cell Stain Kit from Thermo Fisher Scientific (Boston, 475 

MA) was used to detect and exclude dead cells. After washing with PBS 10% FBS, cells underwent 476 

surface staining with the following monoclonal antibodies as previously described (Rinaldi S. et al. 477 

2021): LAG3 BV650, TIGIT PE-Cy7, CD19 Alexa Fluor 700, HLA-DR PE, CCR7 FITC, CD38 478 

BV711, PD-L1 BV711, PD-1 BV421, and CD8 PerCP from BioLegend (San Diego, CA); CD3 479 
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BUV496, CD4 APC-Cy7, CD4 APC-H7, PD-1 BV650, CXCR5 Alexa Fluor 647, and CD27 BV480 480 

from BD Biosciences (San Jose, CA); and CD45RO PE-Cy5.5 from Beckman Coulter (Fullerton, 481 

CA). Finally, stained cells were resuspended in 1% paraformaldehyde (PFA) and acquired using 482 

Stained cells were acquired on a BD LSRFortessa (BD Biosciences) and analysis performed using 483 

FlowJo v10.0.8 (Tree Star) software. Gating strategies for B-cell phenotypes, T-bet and CD11c are 484 

provided in Fig.1. Gating strategies for T-cell analysis were shown previously (28). Positive cell 485 

gating was set using fluorescence minus one control. All the reagents were tested and titrated for 486 

optimum concentration before usage. 487 

 488 

Quantitative total HIV-1 DNA assay 489 

Total HIV-1 DNA was quantified in PBMCs of 40 PHIV by real-time quantitative reverse 490 

transcription PCR (qRT-PCR) as previously described (43). All measurements were done in 491 

triplicates. Results are reported as copies of HIV-1 per million cells. 492 

 493 

Quantitative caHIV-1 RNA assay 494 

caHIV-1 RNA was quantified as described in (28). Briefly, Qiasymphony automated platform was 495 

used to isolate total cellular RNA (DSP virus/pathogen mini kit (Qiagen). RNA was further processed 496 

in an in-house assay using primers of previously validated assays (44, 45) to selectively amplify total 497 

(LTR) and unspliced (pol) ca-HIV-1 RNA via qRT-PCR. In order to express caHIV-1 RNA copies 498 

per 106 PBMC, the caHIV-1 RNA measurements were normalized against cellular genes TBP1 and 499 

IPO8 expression. 500 

 501 

Plasma proteomics preparation and analysis  502 

Plasma proteomics data was produced using a High-performance liquid chromatography mass 503 

spectrometry (HPLC/MS) method as previously described (16). The sample processing employed an 504 
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MStern blotting protocol previously developed and validated in house (46-49). In brief, 1 µL of 505 

plasma (~50 µg of proteins) was mixed in 100 µL of urea buffer. Following reduction and alkylation 506 

of the cysteine side chains, an amount of 15 µg of proteins was loaded on to a 96-well plate with a 507 

polyvinylidene fluoride (PVDF) membrane at the bottom (Millipore-Sigma), which had been 508 

previously activated and primed. Trypsinization of the proteins adsorbed to the membrane was 509 

achieved by incubation with the protease for 2h at 37°C. Resulting tryptic peptides were eluted off 510 

the membrane with 40% acetonitrile (ACN)/0.1% formic acid (FA). The peptides were subsequently 511 

cleaned-up using a 96-well MACROSPIN C18 plate (TARGA, The NestGroup Inc.). The samples 512 

were analysed on the same LC/MS system as the data-dependent acquisition (DDA) runs using 513 

identical LC parameters (45 minutes gradient, 59 minutes total runtime). The m/z range 375−1200, 514 

covering 95% of the identified peptide, was divided into 15 variable windows based on density, and 515 

the following parameters were used for the subsequent DIA analysis: resolution 35000 @ m/z 200, 516 

AGC target 3e6, maximum IT 120 ms, fixed first mass m/z 200, NCE 27. The DIA scans preceded 517 

an MS1 Full scan with identical parameters yielding a total cycle time of 2.4s. We use a previously 518 

published in house generated spectral library (16). All DIA data were directly analysed in Spectronaut 519 

v12.0.20491.18 (Biognosys, Switzerland). Standard search settings were employed, which included 520 

enabling dynamic peak detection, automatic precision nonlinear iRT calibration, interference 521 

correction, and cross run normalization (total peak area). All results were filtered by a q-value of 0.01 522 

(corresponding to an FDR of 1% on the precursor and protein levels). Otherwise default settings were 523 

used. 524 

 525 

Anti-Measles IgG 526 

Plasma Anti-Measles IgG titres were measures using EuroImmunAnti-Morbillo ELISA (IgG) (LOT 527 

E180111AE), following manufactures instruction. Results given as UI/L. 528 

 529 

Statistical analyses 530 
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Between-group comparisons were performed using non-parametric U-Mann-Whitney test for 531 

continuous variables or Fisher’s exact test for categorical variables. Spearman correlation (rho) was 532 

used to describe the association between continuous variables. Proteins and cell populations with 533 

>70% zero values or >50% missing data were omitted from heatmaps. To focus on single associations 534 

(Fig. 1d, 2b and 3a) only statistically significant correlations (p-values <0.05) were shown. In other 535 

cases, to highlight clustering patterns, were shown all correlations (Fig. 3a and Supp Fig. 1). The 536 

chromatic scale is proportional to the Spearman correlation, using red for positive correlations (rho > 537 

0) and blue for negative ones (rho < 0).  To investigate the biological role of the proteins belonging 538 

to the two clusters (Fig 3a), a pathway enrichment analysis in Reactome 2016 and GO Biological 539 

Process 2021 databases was performed using the R package “enrichr” v3.0 (50). Statistical analyses 540 

were performed using R (version 4.1.1) or GraphPad Prism 6.0 software (San Diego, CA).  541 

 542 
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