110 research outputs found

    The role of IL-23 in the immunopathogenesis of psoriasis

    Get PDF
    In just 10 years from its discovery in 2000, interleukin-23 has quickly moved from being recognized as a pro-inflammatory cytokine to a key player and potential therapeutic target in psoriasis

    Distritos industriales, territorio e innovación: un aprendizaje para las economías regionales argentinas

    Get PDF
    La introducción de innovaciones tecnológicas en los sectores productivos locales constituye uno de los temas centrales de desarrollo local y uno de los mayores desafíos para las economías latinoamericanas. En esta última temática, existe una vasta literatura que hace referencia a los distritos industriales italianos como modelos de desarrollo económico local, que se caracterizan por un conjunto de pequeñas y medianas empresas localizadas e interconectadas territorialmente, que a través de la interacción y movilización de los recursos endógenos del territorio crean condiciones favorables para el desarrollo y la innovación. En sustancia, la mayor capacidad de esta forma de organización para intensificar la transferencia de conocimiento e innovaciones en las empresas, hizo que la propia idea de medio innovador3 apareciera desde sus inicios, muy ligada a la conceptualización de distrito industrial. Por lo tanto, el interés se centra en conocer cómo funciona este medio innovador y los elementos que lo conforman, su dinámica y su desarrollo interno, para lo cual se describe y recrea un proceso de innovación desarrollado en el distrito metalmecánico geográficamente localizado en la Provincia de Módena (Italia). A través del análisis de un caso empírico4 se intentará mostrar de qué forma se desarrolla este proceso en el interno del distrito y cómo las empresas en las aglomeraciones territoriales deben combinar sus relaciones internas con otros actores, como instituciones locales que pueden servir como agentes intermediarios para el acceso a nuevas fuentes de conocimiento

    Recurrent extreme bilateral gigantomastia caused by pseudoangiomatous stromal hyperplasia (PASH) syndrome: a case report

    Get PDF
    Pseudoangiomatous stromal hyperplasia (PASH) of the breast is a rare and benign medical condition in which the breast tissue is affected by an abnormal myofibroblastic proliferation, which mimics a low-grade sarcoma angiomatous proliferation. PASH usually presents itself either as a palpable mass or as an incidental diagnosis during breast specimens' histological examination. A few cases have been reported in the literature of a diffuse form of breast PASH syndrome in which the clinical presentation is a bilateral form of gigantomastia without palpable masses. In such cases, the optimal surgical management is still debated due to a significant risk of relapse after breast reduction. Mastectomy seems to be the endpoint of this condition in relapsing cases. Recent studies report a good outcome with a Tamoxifen regimen when surgery cannot be performed, supporting a hormonal component for the etiology of the condition. This study reports on an extremely rare case of bilateral, rapid, and severe PASH in a young patient, presenting as a truly disabling gigantomastia that forced the patient to use a wheelchair due to the excessive breast weights (25 kg the right breast and 21 kg the left). We describe her complicated medical history, her diagnosis, and our course of treatment

    Activation of the aryl hydrocarbon receptor dampens the severity of inflammatory skin conditions

    Get PDF
    Environmental stimuli are known to contribute to psoriasis pathogenesis and that of other autoimmune diseases, but the mechanisms are largely unknown. Here we show that the aryl hydrocarbon receptor (AhR), a transcription factor that senses environmental stimuli, modulates pathology in psoriasis. AhR-activating ligands reduced inflammation in the lesional skin of psoriasis patients, whereas AhR antagonists increased inflammation. Similarly, AhR signaling via the endogenous ligand FICZ reduced the inflammatory response in the imiquimod-induced model of skin inflammation and AhR-deficient mice exhibited a substantial exacerbation of the disease, compared to AhR-sufficient controls. Nonhematopoietic cells, in particular keratinocytes, were responsible for this hyperinflammatory response, which involved upregulation of AP-1 family members of transcription factors. Thus, our data suggest a critical role for AhR in the regulation of inflammatory responses and open the possibility for novel therapeutic strategies in chronic inflammatory disorders

    Exploring the role of immune pathways in the risk and development of depression in adolescence : research protocol of the IDEA-FLAME study

    Get PDF
    Extensive research suggests a role for the innate immune system in the pathogenesis of depression, but most of the studies are conducted in adult populations, in high-income countries and mainly focus on the study of inflammatory proteins alone, which provides only a limited understanding of the immune pathways involved in the development of depression. The IDEA-FLAME study aims to identify immune phenotypes underlying increased risk of developing depression in adolescence in a middle-income country. To this end, we will perform deep-immunophenotyping of peripheral blood mononuclear cells and RNA genome-wide gene expression analyses in a longitudinal cohort of Brazilian adolescents stratified for depression risk. The project will involve the 3-year follow-up of an already recruited cohort of 150 Brazilian adolescents selected for risk/presence of depression on the basis of a composite risk score we developed using sociodemographic characteristics (50 adolescents with low-risk and 50 with high-risk of developing depression, and 50 adolescents with a current major depressive disorder). We will 1) test whether the risk group classification at baseline is associated with differences in immune cell frequency, phenotype and functional status, 2) test whether baseline immune markers (cytokines and immune cell markers) are associated with severity of depression at 3-year follow-up, and 3) identify changes in gene expression of immune pathways over the 3-year follow-up in adolescents with increased risk and presence of depression. Because of the exploratory nature of the study, the findings would need to be replicated in a separate and larger sample. Ultimately, this research will contribute to elucidating key immune therapeutic targets and inform the development of interventions to prevent onset of depression among adolescents

    Using Real-World Data to Guide Ustekinumab Dosing Strategies for Psoriasis: A Prospective Pharmacokinetic-Pharmacodynamic Study.

    Get PDF
    Variation in response to biologic therapy for inflammatory diseases, such as psoriasis, is partly driven by variation in drug exposure. Real-world psoriasis data were used to develop a pharmacokinetic/pharmacodynamic (PK/PD) model for the first-line therapeutic antibody ustekinumab. The impact of differing dosing strategies on response was explored. Data were collected from a UK prospective multicenter observational cohort (491 patients on ustekinumab monotherapy, drug levels, and anti-drug antibody measurements on 797 serum samples, 1,590 measurements of Psoriasis Area Severity Index (PASI)). Ustekinumab PKs were described with a linear one-compartment model. A maximum effect (Emax ) model inhibited progression of psoriatic skin lesions in the turnover PD mechanism describing PASI evolution while on treatment. A mixture model on half-maximal effective concentration identified a potential nonresponder group, with simulations suggesting that, in future, the model could be incorporated into a Bayesian therapeutic drug monitoring "dashboard" to individualize dosing and improve treatment outcomes

    Gene expression changes with age in skin, adipose tissue, blood and brain

    Get PDF
    BACKGROUND Previous studies have demonstrated that gene expression levels change with age. These changes are hypothesized to influence the aging rate of an individual. We analyzed gene expression changes with age in abdominal skin, subcutaneous adipose tissue and lymphoblastoid cell lines in 856 female twins in the age range of 39-85 years. Additionally, we investigated genotypic variants involved in genotype-by-age interactions to understand how the genomic regulation of gene expression alters with age. RESULTS Using a linear mixed model, differential expression with age was identified in 1,672 genes in skin and 188 genes in adipose tissue. Only two genes expressed in lymphoblastoid cell lines showed significant changes with age. Genes significantly regulated by age were compared with expression profiles in 10 brain regions from 100 postmortem brains aged 16 to 83 years. We identified only one age-related gene common to the three tissues. There were 12 genes that showed differential expression with age in both skin and brain tissue and three common to adipose and brain tissues. CONCLUSIONS Skin showed the most age-related gene expression changes of all the tissues investigated, with many of the genes being previously implicated in fatty acid metabolism, mitochondrial activity, cancer and splicing. A significant proportion of age-related changes in gene expression appear to be tissue-specific with only a few genes sharing an age effect in expression across tissues. More research is needed to improve our understanding of the genetic influences on aging and the relationship with age-related diseases

    Characterization of functional methylomes by next-generation capture sequencing identifies novel disease-associated variants.

    Get PDF
    Most genome-wide methylation studies (EWAS) of multifactorial disease traits use targeted arrays or enrichment methodologies preferentially covering CpG-dense regions, to characterize sufficiently large samples. To overcome this limitation, we present here a new customizable, cost-effective approach, methylC-capture sequencing (MCC-Seq), for sequencing functional methylomes, while simultaneously providing genetic variation information. To illustrate MCC-Seq, we use whole-genome bisulfite sequencing on adipose tissue (AT) samples and public databases to design AT-specific panels. We establish its efficiency for high-density interrogation of methylome variability by systematic comparisons with other approaches and demonstrate its applicability by identifying novel methylation variation within enhancers strongly correlated to plasma triglyceride and HDL-cholesterol, including at CD36. Our more comprehensive AT panel assesses tissue methylation and genotypes in parallel at ∼4 and ∼3 M sites, respectively. Our study demonstrates that MCC-Seq provides comparable accuracy to alternative approaches but enables more efficient cataloguing of functional and disease-relevant epigenetic and genetic variants for large-scale EWAS.This work was supported by a Canadian Institute of Health Research (CIHR) team grant awarded to E.G., A.T., M.C.V. and M.L. (TEC-128093) and the CIHR funded Epigeneome Mapping Centre at McGill University (EP1-120608) awarded to T.P. and M.L., and the Swedish Research Council, Knut and Alice Wallenberg Foundation and the Torsten Söderberg Foundation awarded to L.R. F.A. holds studentship from The Research Institute of the McGill University Health Center (MUHC). F.G. is a recipient of a research fellowship award from the Heart and Stroke Foundation of Canada. A.T. is the director of a Research Chair in Bariatric and Metabolic Surgery. M.C.V. is the recipient of the Canada Research Chair in Genomics Applied to Nutrition and Health (Tier 1). E.G. and T.P. are recipients of a Canada Research Chair Tier 2 award. The MuTHER Study was funded by a programme grant from the Wellcome Trust (081917/Z/07/Z) and core funding for the Wellcome Trust Centre for Human Genetics (090532). TwinsUK was funded by the Wellcome Trust; European Community's Seventh Framework Programme (FP7/2007-2013). The study also receives support from the National Institute for Health Research (NIHR)-funded BioResource, Clinical Research Facility and Biomedical Research Centre based at Guy's and St Thomas' NHS Foundation Trust in partnership with King's College London. T.D.S. is a holder of an ERC Advanced Principal Investigator award. SNP genotyping was performed by The Wellcome Trust Sanger Institute and National Eye Institute via NIH/CIDR. Finally, we thank the NIH Roadmap Epigenomics Consortium and the Mapping Centers (http://nihroadmap.nih.gov/epigenomics/) for the production of publicly available reference epigenomes. Specifically, we thank the mapping centre at MGH/BROAD for generation of human adipose reference epigenomes used in this study.This is the final version. It was first published by NPG at http://www.nature.com/ncomms/2015/150529/ncomms8211/full/ncomms8211.html#abstrac
    corecore