335 research outputs found

    Speedy Techniques to Evaluate Seismic Site Effects in Particular Geomorphologic Conditions: Faults, Cavities, Landslides and Topographic Irregularities

    Get PDF
    The ground motion that can be recorded at the free surface of a terrain is the final result of a series of phenomena that can be grouped into three fundamental typologies: the source mechanism, the seismic wave propagation till the bedrock interface below the investigated site and the site effects (Fig. 1). The first two features define the kind of seismic input whereas the third represents all modifications that can occur as a consequence of the interaction between seismic waves and local characteristics of the investigated site. The physical and mechanical properties of terrains as well as their morphologic and stratigraphic features appreciably affect the characteristics of the ground motion observed at the surface. The whole process of modifications undergone by a given seismic input in terms of amplitude, frequency content and duration, as a consequence of local characteristics, is generally termed the “local seismic response”. It is indeed well known that the spectral composition of a seismic event is modified first during the source-bedrock path (attenuation function), and second, when the seismic input interacts with the soft terrains layered between the bedrock and the free surface (Fig. 1a). This latter effect, significantly changes the spectral content so that it is extremely important for estimating the final input to which all structures built in the study area will be subjected.peer-reviewe

    Blocking CD248 molecules in perivascular stromal cells of patients with systemic sclerosis strongly inhibits their differentiation toward myofibroblasts and proliferation: A new potential target for antifibrotic therapy

    Get PDF
    Background: Fibrosis may be considered the hallmark of systemic sclerosis (SSc), the end stage triggered by different pathological events. Transforming growth factor-ÎČ (TGF-ÎČ) and platelet-derived growth factor BB (PDGF-BB) are profibrotic molecules modulating myofibroblast differentiation and proliferation, respectively. There is evidence linking CD248 with these two molecules, both highly expressed in patients with SSc, and suggesting that CD248 may be a therapeutic target for several diseases. The aim of this work was to evaluate the expression of CD248 in SSc skin and its ability to modulate SSc fibrotic process. Methods: After ethical approval was obtained, skin biopsies were collected from 20 patients with SSc and 10 healthy control subjects (HC). CD248 expression was investigated in the skin, as well as in bone marrow mesenchymal stem cells (MSCs) treated with TGF-ÎČ or PDGF-BB, by immunofluorescence, qRT-PCR, and Western blotting. Finally, in SSc-MSCs, the CD248 gene was silenced by siRNA. Results: Increased expression of CD248 was found in endothelial cells and perivascular stromal cells of SSc skin. In SSc-MSCs, the levels of CD248 and α-smooth muscle actin expression were significantly higher than in HC-MSCs. In both SSc- and HC-MSCs, PDGF-BB induced increased expression of Ki-67 when compared with untreated cells but was unable to modulate CD248 levels. After CD248 silencing, both TGF-ÎČ and PDGF-BB signaling were inhibited in SSc-MSCs. Conclusions: CD248 overexpression may play an important role in the fibrotic process by modulating the molecular target, leading to perivascular cells differentiation toward myofibroblasts and interfering with its expression, and thus might open a new therapeutic strategy to inhibit myofibroblast generation during SSc

    Infrared methodologies for the assessment of skin temperature daily rhythm in two domestic mammalian species

    Get PDF
    To assess the accuracy of infrared methodologies for daily rhythm monitoring of skin temperature, five clinically healthy Italian Saddle gelding horses, and five not pregnant and not lactating Camosciata goats, were monitored every 4 h over a 48 h period. The horses were housed in individual boxes, while the goats in two indoor pens, under natural photoperiod and natural environmental temperature. In each animal, skin temperature was recorded with the use of a digital infrared camera and a non-contact infrared thermometer, in five regions: neck, shoulder, ribs, flank and croup. Recorded values were compared with the well-established daily rhythm of rectal temperature. Rectal temperature was recorded at the same time by means of a digital thermometer. In horses, a lower value of skin temperature was recorded using the infrared thermometer for the croup region compared to shoulder and flank; a lower value of skin temperature was recorded using thermography for the croup region compared to the shoulder. In goats, a lower value of skin temperature was recorded using the infrared thermometer for the croup region compared to the flank. In both species, higher values of rectal temperature were observed, compared to the temperature recorded at the skin regions using the other two methodologies. Cosinor rhythmometry showed a daily rhythm of rectal and skin temperature recorded using both methodologies in all the examined regions. General linear model (GLM) showed statistically significant effect of breed on all rhythmic parameters; of day of monitoring on amplitude; of site of recording (rectal vs skin regions) on mesor, amplitude and acrophase; and no effect of methodologies used. The results of this study show the differences in rhythmicity of various body regions temperature and their differences in comparison with daily rhythm rectal temperature. The use of infrared methodologies was inaccurate in assessing body core temperature, but its use could be considered for the evaluation of inflammation in the different body sites

    Serum proteins profile in Comisana lambs during the first month of life

    Get PDF
    Abstract. The aim of the present study was to measure the serum total proteins and the serum protein fractions (albumin, α1-, α2-, ÎČ-, and Îł- globulins) of ten newborn lambs (Comisana breed) during the first 30 days of life in order to obtain useful information for neonatal care. From each animal, blood samples were collected via jugular venipuncture at the same hour (9.00) every 3 days for 30 days starting from birth (day 0). The concentrations of serum total proteins and albumin, α1-, α2-, ÎČ-, Îł- globulins, and Albumin/Globulins (A/G) ratio were determined using an automated electrophoresis system. One-way repeated measures analysis of variance (ANOVA), followed by Bonferroni's test, was used to determine significant differences between mean values of the studied parameters from the 1st to the 30th day of the experimental period. Data analysis of variance showed a statistical effect of days of life on total proteins, albumin, α1-globulins, ÎČ-globulins, Îł-globulins and ratio A/G during the first 30 days of life (P<0.0001), while no statistical significant effect of days of life was observed on α2-globulins during the experimental period (P=0.27). The obtained results indicated that passive transfer status, determined from serum immunoglobulin concentration 24 hours after birth, is a significant source of variation in preweaning growth performance in dairy lambs. These finding make a contribution to the knowledge of physiological adaptation in lambs during the first 30 days of life and give useful information for the diagnosis and treatment of neonatal diseases

    How COVID-19 Pandemic Indirectly Affected Orthopedic Patients: A Case Report of a Rescue Treatment For a Proximal Humerus Nonunion

    Get PDF
    Humeral fractures account for 5% to 8% of all fractures, whereas proximal humerus fractures represent the seventh most frequent fractures in adults..

    Evaluation of the stiffening mechanism based on micro-sized particle inclusions in laminated composites

    Get PDF
    Rigid particles have been incorporated into laminated composites, especially to enhance their bending performance attributed to the stiffening of the matrix phase (i) and the increased interlaminar shear resistance (ii). In order to better evaluate the improvement mechanism provided by the particulate inclusions, this work investigates the incorporation of micro-sized silica on the top, bottom and both surfaces of glass fibre laminates, mitigating the interference of the interlocking effect. Three-point bending, and impact tests are performed to evaluate the hybrid glass fibre composites containing 5, 7.5 and 10 wt% of micro silica. In addition, the effect of the micro silica particles into epoxy polymers is verified under tensile, compressive and abrasion tests. A finite element model is developed to simulate the three-point bending test and to better assess the behaviour of the composite laminate. Although silica particles lead to increased compressive modulus of the epoxy polymers, their positive effect on glass fibre composites under flexural loads is more evident when placed on the bottom side of the laminates subjected to the maximum tensile stress. The incorporation of 7.5 wt% silica microparticles at the bottom surface of the laminates achieves higher flexural strength and lower impact resistance

    The 26 year-long X-ray light curve and the X-ray spectrum of the BL Lac Object 1E 1207.9+3945 in its brightest state

    Full text link
    We studied the temporal and spectral evolution of the synchrotron emission from the high energy peaked BL Lac object 1E 1207.9+3945. Two recent observations have been performed by the XMM-Newton and Swift satellites; we carried out X-ray spectral analysis for both of them, and photometry in optical-ultraviolet filters for the Swift one. Combining the results thus obtained with archival data we built the long-term X-ray light curve, spanning a time interval of 26 years, and the Spectral Energy Distribution (SED) of this source. The light curve shows a large flux increasing, about a factor of six, in a time interval of a few years. After reaching its maximum in coincidence with the XMM-Newton pointing in December 2000 the flux decreased in later years, as revealed by Swift. The very good statistics available in the 0.5-10 keV XMM-Newton X-ray spectrum points out a highly significant deviation from a single power law. A log-parabolic model with a best fit curvature parameter of 0.25 and a peak energy at ~1 keV describes well the spectral shape of the synchrotron emission. The simultaneous fit of Swift UVOT and XRT data provides a milder curvature (b~0.1) and a peak at higher energies (~15 keV), suggesting a different state of source activity. In both cases UVOT data support the scenario of a single synchrotron emission component extending from the optical/UV to the X-ray band. New X-ray observations are important to monitor the temporal and spectral evolution of the source; new generation gamma-ray telescopes like AGILE and GLAST could for the first time detect its inverse Compton emission.Comment: 7 pages, 6 figures, accepted for publication in A&
    • 

    corecore