76 research outputs found

    Nondestructive three-dimensional imaging of crystal strain and rotations in an extended bonded semiconductor heterostructure

    No full text
    International audienceWe report the 3D mapping of strain and tilts of crystal planes in an extended InP nanostructured layer bonded onto silicon, measured without sample preparation. Our approach takes advantages of 3D x-ray Bragg ptychography combined to an optimized inversion process. The excellent agreement with the sample nominal structure validates the reconstruction while the evidence of spatial fluctuations hardly observable by other means, underlines the specificities of Bragg ptychography

    Continuous-Wave Second-Harmonic Generation in Orientation-Patterned Gallium Phosphide Waveguides at Telecom Wavelengths

    Get PDF
    A new process to produce orientation-patterned gallium phosphide (OP-GaP) on GaAs with almost perfectly parallel domain boundaries is presented. Taking advantage of the chemical selectivity between phosphides and arsenides, OP-GaP is processed into suspended shallow-ridge waveguides. Efficient second-harmonic generation from telecom wavelengths is achieved in both Type-I and Type-II polarisation configurations. The highest observed conversion efficiency is 200% W–1 cm–2, with a bandwidth of 2.67 nm in a 1 mm-long waveguide. The variation of the conversion efficiency with wavelength closely follows a squared cardinal sine function, in excellent agreement with theory, confirming the good uniformity of the poling period over the entire length of the waveguide

    Ultra-Low Threshold cw Lasing in Tensile Strained GeSn Microdisk Cavities

    Get PDF
    GeSn is proven as a good candidate to achieve CMOS-compatible laser sources on silicon. Lasing demonstrations in this alloy were based on directness of the band structure, this directness being increased with increasing the Sn content above 8 at.%. These past few years the research were consequently focused on incorporating the highest Sn content as possible to achieve high directness and high temperature laser operation. This unfortunately results is increased threshold. In this contribution we discuss the advantages in combining tensile strain engineering with lower Sn content alloys. This approach is motivated by the higher material quality in lower Sn content. The case with Sn content as small as 5.4 at.% Sn will be discussed. The alloy is initially compressively strained, and exhibits an indirect band gap that is turned to direct by applying tensile strain. A specific technology based on transfer On Insulator stressor layer on metal was developed to address strain engineering, thermal cooling and defective interface with the Ge-VS. This led to lasing in Ge0.95Sn0.05 microdisk cavities with dramatically reduced thresholds, by two order of magnitude, as compared to the case with high Sn alloys and as consequence enables cw operation

    Ultra-low-threshold continuous-wave and pulsed lasing in tensile-strained GeSn alloys

    Get PDF
    Strained GeSn alloys are promising for realizing light emitters based entirely on group IV elements. Here, we report GeSn microdisk lasers encapsulated with a SiNx stressor layer to produce tensile strain. A 300 nm-thick GeSn layer with 5.4 at% Sn, which is an indirect-bandgap semiconductor as-grown, is transformed via tensile strain engineering into a direct-bandgap semiconductor that supports lasing. In this approach, the low Sn concentration enables improved defect engineering and the tensile strain delivers a low density of states at the valence band edge, which is the light hole band. We observe ultra-low-threshold continuous-wave and pulsed lasing at temperatures up to 70 K and 100 K, respectively. Lasers operating at a wavelength of 2.5 μm have thresholds of 0.8 kW cm−2 for nanosecond pulsed optical excitation and 1.1 kW cm−2 under continuous-wave optical excitation. The results offer a path towards monolithically integrated group IV laser sources on a Si photonics platform

    Measuring the surface bonding energy: A comparison between the classical double-cantilever beam experiment and its nanoscale analog

    No full text
    International audiencePaper published as part of the special topic on Chemical Physics, Energy, Fluids and Plasmas, Materials Science and Mathematical Physics ARTICLES YOU MAY BE INTERESTED IN Improved compensation and measurement of the magnetic gradients in an atomic vapor cell AIP Advances 10, 045002 (2020)
    • …
    corecore