11 research outputs found

    Report on the sixth blind test of organic crystal-structure prediction methods

    No full text
    The sixth blind test of organic crystal-structure prediction (CSP) methods has been held, with five target systems: a small nearly rigid molecule, a polymorphic former drug candidate, a chloride salt hydrate, a co-crystal, and a bulky flexible molecule. This blind test has seen substantial growth in the number of submissions, with the broad range of prediction methods giving a unique insight into the state of the art in the field. Significant progress has been seen in treating flexible molecules, usage of hierarchical approaches to ranking structures, the application of density-functional approximations, and the establishment of new workflows and "best practices" for performing CSP calculations. All of the targets, apart from a single potentially disordered Z` = 2 polymorph of the drug candidate, were predicted by at least one submission. Despite many remaining challenges, it is clear that CSP methods are becoming more applicable to a wider range of real systems, including salts, hydrates and larger flexible molecules. The results also highlight the potential for CSP calculations to complement and augment experimental studies of organic solid forms

    Towards crystal structure prediction of complex organic compounds - a report on the fifth blind test

    Get PDF
    Following on from the success of the previous crystal structure prediction blind tests (CSP1999, CSP2001, CSP2004 and CSP2007), a fifth such collaborative project (CSP2010) was organized at the Cambridge Crystallographic Data Centre. A range of methodologies was used by the participating groups in order to evaluate the ability of the current computational methods to predict the crystal structures of the six organic molecules chosen as targets for this blind test. The first four targets, two rigid molecules, one semi-flexible molecule and a 1: 1 salt, matched the criteria for the targets from CSP2007, while the last two targets belonged to two new challenging categories - a larger, much more flexible molecule and a hydrate with more than one polymorph. Each group submitted three predictions for each target it attempted. There was at least one successful prediction for each target, and two groups were able to successfully predict the structure of the large flexible molecule as their first place submission. The results show that while not as many groups successfully predicted the structures of the three smallest molecules as in CSP2007, there is now evidence that methodologies such as dispersion-corrected density functional theory (DFT-D) are able to reliably do so. The results also highlight the many challenges posed by more complex systems and show that there are still issues to be overcome

    The Consistent Initialization of Differential-Algebraic Systems

    No full text
    The initial values for Variables in mixed Differential-Algebraic (DAE) systems must satisfy not only the original equations in the system but also their differentials with respect to time. Whether or not this additional requirement actually imposes extra constraints on the initial Values depends on the particular problem. This paper derives a criterion for determining whether differentiation of a subset of the equations of a nonlinear DAE system provides further constraints to be satisfied by the initial values. A graph-theoretical algorithm is proposed to locate those subsets of the system equations which need to be differentiated. ©1988 Society for Industrial and Applied Mathematic

    Optimal Design of Thermally Coupled Distillation Columns

    No full text

    An exact reformulation algorithm for large nonconvex NLPs involving bilinear terms

    No full text
    Many nonconvex nonlinear programming (NLP) problems of practical interest involve bilinear terms and linear constraints, as well as, potentially, other convex and nonconvex terms and constraints. In such cases, it may be possible to augment the formulation with additional linear constraints (a subset of Reformulation-Linearization Technique constraints) which do not a#ect the feasible region of the original NLP but tighten that of its convex relaxation to the extent that some bilinear terms may be dropped from the problem formulation. We present an e#cient graph-theoretical algorithm for e#ecting such exact reformulations of large, sparse NLPs. The global solution of the reformulated problem using spatial Branchand Bound algorithms is usually significantly faster than that of the original NLP. We illustrate this point by applying our algorithm to a set of pooling and blending global optimization problems

    Successful prediction of a model pharmaceutical in the fifth blind test of crystal structure prediction

    No full text
    The range of target structures in the fifth international blind test of crystal structure prediction was extended to include a highly flexible molecule, (benzyl-(4-(4-methyl-5-(p-tolylsulfonyl)-1,3-thiazol-2-yl)phenyl)carbamate, as a challenge representative of modern pharmaceuticals. Two of the groups participating in the blind test independently predicted the correct structure. The methods they used are described and contrasted, and the implications of the capability to tackle molecules of this complexity are discussed
    corecore