11 research outputs found

    How much of the intraaortic balloon volume is displaced toward the coronary circulation?

    Get PDF
    This is a post-print version of the published article. Copyright @ 2010 The American Association for Thoracic Surgery.This article has been made available through the Brunel Open Access Publishing Fund.Objective: During intraaortic balloon inflation, blood volume is displaced toward the heart (Vtip), traveling retrograde in the descending aorta, passing by the arch vessels, reaching the aortic root (Vroot), and eventually perfusing the coronary circulation (Vcor). Vcor leads to coronary flow augmentation, one of the main benefits of the intraaortic balloon pump. The aim of this study was to assess Vroot and Vcor in vivo and in vitro, respectively. Methods: During intraaortic balloon inflation, Vroot was obtained by integrating over time the aortic root flow signals measured in 10 patients with intraaortic balloon assistance frequencies of 1:1 and 1:2. In a mock circulation system, flow measurements were recorded simultaneously upstream of the intraaortic balloon tip and at each of the arch and coronary branches of a silicone aorta during 1:1 and 1:2 intraaortic balloon support. Integration over time of the flow signals during inflation yielded Vcor and the distribution of Vtip. Results: In patients, Vroot was 6.4% ± 4.8% of the intraaortic balloon volume during 1:1 assistance and 10.0% ± 5.0% during 1:2 assistance. In vitro and with an artificial heart simulating the native heart, Vcor was smaller, 3.7% and 3.8%, respectively. The distribution of Vtip in vitro varied, with less volume displaced toward the arch and coronary branches and more volume stored in the compliant aortic wall when the artificial heart was not operating. Conclusion: The blood volume displaced toward the coronary circulation as the result of intraaortic balloon inflation is a small percentage of the nominal intraaortic balloon volume. Although small, this percentage is still a significant fraction of baseline coronary flow.This article is available through the Open Access Publishing Fund

    Does conventional intra-aortic balloon pump trigger timing produce optimal hemodynamic effects in vivo?

    Get PDF
    PURPOSE: The intra-aortic balloon pump (IABP) provides circulatory support through counterpulsation. The hemodynamic effects of the IABP may vary with assisting frequency and depend on IAB inflation/deflation timing. We aimed to assess in vivo the IABP benefits on coronary, aortic, and left ventricular hemodynamics at different assistance frequencies and trigger timings. METHODS: Six healthy, anesthetized, open-chest sheep received IABP support at 5 timing modes (EC, LC, CC, CE, CL, corresponding to early/late/conventional/conventional/conventional inflation and conventional/conventional/conventional/early/late deflation, respectively) with frequency 1:3 and 1:1. Aortic (Qao) and coronary (Qcor) flow, and aortic (Pao) and left ventricular (PLV) pressure were recorded simultaneously, with and without IABP support. Integrating systolic Qao yielded stroke volume (SV). RESULTS: EC at 1:1 produced the lowest end-diastolic Pao (59.5 ± 7.8 mmHg [EC], 63.4 ± 11.1 mmHg [CC]), CC at 1:1 the lowest systolic PLV (69.1 ± 6.5 mmHg [CC], 76.4 ± 6.5 mmHg [control]), CC at 1:1 the highest SV (88.5 ± 34.4 ml [CC], 76.6 ± 31.9 ml [control]) and CC at 1:3 the highest diastolic Qcor (187.2 ± 25.0 ml/min [CC], 149.9 ± 16.6 ml/min [control]). Diastolic Pao augmentation was enhanced by both assistance frequencies alike, and optimal timings were EC for 1:3 (10.4 ± 2.8 mmHg [EC], 6.7 ± 3.8 mmHg [CC]) and CC for 1:1 (10.8 ± 6.7 mmHg [CC], -3.0 ± 3.8 mmHg [control]). CONCLUSIONS: In our experiments, neither a single frequency nor a single inflation/deflation timing, including conventional IAB timing, has shown superiority by uniformly benefiting all studied hemodynamic parameters. A choice of optimal frequency and IAB timing might need to be made based on individual patient hemodynamic needs rather than as a generalized protocol.British Heart Foundation (PG/12/73/29730)
    corecore