809 research outputs found

    Improving network intrusion detection system performance through quality of service configuration and parallel technology

    Get PDF
    This paper outlines an innovative software development that utilizes Quality of Service (QoS) and parallel technologies in Cisco Catalyst Switches to increase the analytical performance of a Network Intrusion Detection and Protection System (NIDPS) when deployed in highspeed networks. We have designed a real network to present experiments that use a Snort NIDPS. Our experiments demonstrate the weaknesses of NIDPSes, such as inability to process multiple packets and propensity to drop packets in heavy traffic and high-speed networks without analysing them. We tested Snort’s analysis performance, gauging the number of packets sent, analysed, dropped, filtered, injected, and outstanding. We suggest using QoS configuration technologies in a Cisco Catalyst 3560 Series Switch and parallel Snorts to improve NIDPS performance and to reduce the number of dropped packets. Our results show that our novel configuration improves performance

    Correlation of Atrial Fibrillation with Left Atrial Volume in Patients with Mitral Stenosis. a Single Centre Study From Pakistan

    Full text link
    Background: Rheumatic heart disease has a strong association with mitral valve stenosis. Atrial fibrillation is one of the most common complications of this condition and is a poor prognostic factor. Early detection and prompt management of atrial fibrillation can help to improve the quality of life and increase the life expectancy of the patients. We carried out this study to investigate the significance of left atrial volumetric changes in mitral stenosis and its correlation with atrial fibrillation. Methodology: We audited the data of 60 patients of rheumatic heart disease who had mitral valve stenosis. The patients were randomized into atrial fibrillation (Group A) and normal sinus rhythm (Group B). We conducted this cross-sectional analytical study at Cardiology Department, Mayo Hospital, Lahore, from 1st February 2017 to 31st January 2018. We only included those patients who consented to be a part of this study and fulfilled our predefined inclusion criteria. Left atrial volume was measured by prolate ellipse method and biplane methods on echocardiography. The Data was analyzed on SPSS v20. Results: Sixty patients were included in the study. Among the subjects, thirty-six (60%) were males, and twenty-four (40%) were females. Atrial fibrillation was noted in 43.33% of the patients of mitral valve stenosis. There was a marked difference in the mean volume of the left atrium among the two groups. We observed that the mean area of the mitral valve for Group A patients was larger than that of patients in Group B. Our study showed an inverse correlation between left atrial volume and mitral valve area among Group A patients. Conclusion: Patients of mitral stenosis are at an increased risk of developing atrial fibrillation if the left atrial volume is increasing. All patients with mitral stenosis should have routine echocardiography & measurement of left atrial volumes, so that proper treatment can be started if the left atrial volume is increasing, to prevent atrial fibrillation

    Explainable Information Retrieval using Deep Learning for Medical images

    Get PDF
    Image segmentation is useful to extract valuable information for an efficient analysis on the region of interest. Mostly, the number of images generated from a real life situation such as streaming video, is large and not ideal for traditional segmentation with machine learning algorithms. This is due to the following factors (a) numerous image features (b) complex distribution of shapes, colors and textures (c) imbalance data ratio of underlying classes (d) movements of the camera, objects and (e) variations in luminance for site capture. So, we have proposed an efficient deep learning model for image classification and the proof-of-concept has been the case studied on gastrointestinal images for bleeding detection. The Explainable Artificial Intelligence (XAI) module has been utilised to reverse engineer the test results for the impact of features on a given test dataset. The architecture is generally applicable in other areas of image classification. The proposed method has been compared with state-of-the-art including Logistic Regression, Support Vector Machine, Artificial Neural Network and Random Forest. It has reported F1 score of 0.76 on the real world streaming dataset which is comparatively better than traditional methods

    X-ray refinement signficantly underestimates the level of microscopic heterogeneity in biomolecular crystals

    Get PDF
    Biophysical Structural Chemistr

    Quantitative Multi-Parametric Evaluation of Centrosome Declustering Drugs: Centrosome Amplification, Mitotic Phenotype, Cell Cycle and Death

    Get PDF
    Unlike normal cells, cancer cells contain amplified centrosomes and rely on centrosome clustering mechanisms to form a pseudobipolar spindle that circumvents potentially fatal spindle multipolarity (MP). Centrosome clustering also promotes lowgrade chromosome missegregation, which can drive malignant transformation and tumor progression. Putative ‘centrosome declustering drugs’ represent a cancer cell-specific class of chemotherapeutics that produces a common phenotype of centrosome declustering and spindle MP. However, differences between individual agents in terms of efficacy and phenotypic nuances remain unexplored. Herein, we have developed a conceptual framework for the quantitative evaluation of centrosome declustering drugs by investigating their impact on centrosomes, clustering, spindle polarity, cell cycle arrest, and death in various cancer cell lines at multiple drug concentrations over time. Surprisingly, all centrosome declustering drugs evaluated in our study were also centrosome-amplifying drugs to varying extents. Notably, all declustering drugs induced spindle MP, and the peak extent of MP positively correlated with the induction of hypodiploid DNA-containing cells. Our data suggest acentriolar spindle pole amplification as a hitherto undescribed activity of some declustering drugs, resulting in spindle MP in cells that may not have amplified centrosomes. In general, declustering drugs were more toxic to cancer cell lines than non-transformed ones, with some exceptions. Through a comprehensive description and quantitative analysis of numerous phenotypes induced by declustering drugs, we propose a novel framework for the assessm

    Detection and diabetic retinopathy grading using digital retinal images

    Get PDF
    Diabetic Retinopathy is an eye disorder that affects people suffering from diabetes. Higher sugar levels in blood leads to damage of blood vessels in eyes and may even cause blindness. Diabetic retinopathy is identified by red spots known as microanuerysms and bright yellow lesions called exudates. It has been observed that early detection of exudates and microaneurysms may save the patient’s vision and this paper proposes a simple and effective technique for diabetic retinopathy. Both publicly available and real time datasets of colored images captured by fundus camera have been used for the empirical analysis. In the proposed work, grading has been done to know the severity of diabetic retinopathy i.e. whether it is mild, moderate or severe using exudates and micro aneurysms in the fundus images. An automated approach that uses image processing, features extraction and machine learning models to predict accurately the presence of the exudates and micro aneurysms which can be used for grading has been proposed. The research is carried out in two segments; one for exudates and another for micro aneurysms. The grading via exudates is done based upon their distance from macula whereas grading via micro aneurysms is done by calculating their count. For grading using exudates, support vector machine and K-Nearest neighbor show the highest accuracy of 92.1% and for grading using micro aneurysms, decision tree shows the highest accuracy of 99.9% in prediction of severity levels of the disease

    Chloride in Heart Failure:The Neglected Electrolyte

    Get PDF
    The increasing burden of heart failure (HF) and emerging knowledge regarding chloride as a prognostic marker in HF have increased the interest in the pathophysiology and interactions of chloride abnormalities with HF-related factors and treatments. Chloride is among the major electrolytes that play a unique role in fluid homeostasis and is associated with cardiorenal and neurohormonal systems. This review elucidates the role of chloride in the pathophysiology of HF, evaluates the effects of treatment on chloride (eg, diuretic agents cause higher urinary chloride excretion and consequently serum hypochloremia), and discusses recent evidence for the association between chloride levels and mortality

    Towards an anti-fibrotic therapy for scleroderma: targeting myofibroblast differentiation and recruitment

    Get PDF
    BACKGROUND: In response to normal tissue injury, fibroblasts migrate into the wound where they synthesize and remodel new extracellular matrix. The fibroblast responsible for this process is called the myofibroblast, which expresses the highly contractile protein alpha-smooth muscle actin (alpha-SMA). In normal tissue repair, the myofibroblast disappears. Conversely, abnormal myofibroblast persistence is a key feature of fibrotic dieases, including scleroderma (systemic sclerosis, SSc). Myofibroblasts can be derived from differentiation of local resident fibroblasts or by recruitment of microvascular pericytes. CLINICAL PROBLEM ADDRESSED: Controlling myofibroblast differentiation and persistence is crucial for developing anti-fibrotic therapies targeting SSc. BASIC SCIENCE ADVANCES: Insights have been recently generated into how the proteins transforming growth factor beta (TGFbeta), endothelin-1 (ET-1), connective tissue growth factor (CCN2/CTGF) and platelet derived growth factor (PDGF) contribute to myofibroblast differentiation and pericyte recruitment in general and to the persistent myofibroblast phenotype of lesional SSc fibroblast, specifically. RELEVANCE TO CLINICAL CARE: This minireview summarizes recent findings pertinent to the origin of myofibroblasts in SSc and how this knowledge might be used to control the fibrosis in this disease. CONCLUSIONS: TGFbeta, ET-1, CCN2 and PDGF are likely to cooperate in driving tissue repair and fibrogenic responses in fibroblasts. TGFbeta, ET-1 and CCN2 appear to contribute to myofibroblast differentiation; PDGF appears to be involved with pericyte recruitment. Thus, different therapeutic strategies may exist for targeting the multisystem fibrotic disorder SSc

    Severe aortic and arterial aneurysms associated with a TGFBR2 mutation.

    Get PDF
    BACKGROUND: A 24-year-old man presented with previously diagnosed Marfan\u27s syndrome. Since the age of 9 years, he had undergone eight cardiovascular procedures to treat rapidly progressive aneurysms, dissection and tortuous vascular disease involving the aortic root and arch, the thoracoabdominal aorta, and brachiocephalic, vertebral, internal thoracic and superior mesenteric arteries. Throughout this extensive series of cardiovascular surgical repairs, he recovered without stroke, paraplegia or renal impairment. INVESTIGATIONS: CT scans, arteriogram, genetic mutation screening of transforming growth factor beta receptors 1 and 2. DIAGNOSIS: Diffuse and rapidly progressing vascular disease in a patient who met the diagnostic criteria for Marfan\u27s syndrome, but was later rediagnosed with Loeys-Dietz syndrome. Genetic testing also revealed a de novo mutation in transforming growth factor beta receptor 2. MANAGEMENT: Regular cardiovascular surveillance for aneurysms and dissections, and aggressive surgical treatment of vascular disease

    Findings of pilot study following the implementation of point of care intraoperative PTH assay using whole blood during surgery for primary hyperparathyroidism

    Get PDF
    Objective: To report findings of pilot study using a novel point of care (POC) intraoperative parathyroid hormone (IOPTH) assay for parathyroid hormone (PTH) using whole blood during surgery for primary hyperparathyroidism (PHPT). Methods: Patients undergoing surgery for primary hyperparathyroidism from March to November 2022 where intraoperative PTH assay was performed using the NBCL CONNECT IOPTH and the laboratory PTH assay were included (group 1). The biochemistry results were reviewed to determine concordance between NBCL and lab PTH values and diagnostic test parameters of the NBCL CONNECT assay. ‘In-theatre’ times were then compared with a historical cohort (group 2) where the lab-based IOPTH assay alone was used. Results: Of the 141 paired samples in group I, correlation between NBCL and the lab assay was high (rho=0.82; p50% of the basal or 0 min sample; whichever was lower – i.e. positive test) in 23 patients; giving a positive predictive value of 100%. Of the 9 patients that did not demonstrate a drop, two were true negative (negative predictive value of 22%) leading to cure after excision of another gland. Group 1 (150 mins) had a significantly shorter ‘in-theatre’ time compared to group 2 (167 mins) (p=0.007); despite much higher use of near infra-red autofluorescence (NIRAF) (72% vs 11.6% in group I and 2 respectively). Conclusion: The NBCL CONNECT POC IOPTH assay gives comparable results to lab based PTH assays and can be performed without need for a centrifuge or qualified technicians. Surgeons, however, need to be aware of the potential for false-negative results
    • …
    corecore