1,377 research outputs found

    Effectiviteit bodembeschermende voorzieningen voor spoelbassins in de bloembollensector; veldonderzoek

    Get PDF
    Drie principes van bodembeschermende voorzieningen voor spoelbassins zijn in de praktijk onderzocht: remming van infiltratiesnelheid (met klei en folie afdichtingen), hydrologische isolatie (interceptor drains met en zonder afdichtingslaag) en adsorptie. Op zand-, zavel en lössgronden is afdichten met klei of leem nodig wanneer de bodem boven de grondwaterspiegel ligt om recirculatie mogelijk te maken, maar deze maatregel is onvoldoende voor de bescherming van de bodem en zijn aanvullende voorzieningen nodig (bijvoorbeeld hydrologische isolatie). In kwelgebieden en in situaties met een verlaagde bodem is deze variant wel effectief. De effectiviteit van hydrologische isolatie en adsorptielagen lopen uiteen van 90 tot 95%. De investeringen voor bodembeschermende voorzieningen bedragen f 3,00 tot f 13,00 per m3 en de jaarlijkse kosten f 1,70 tot f 2,20 per m3 bassin inhoud. Monitoring dient zich te richten op verspreiding bij hydrologische isolatie en infiltratieremming, aangevuld met monitoring van de kwaliteit van het grondwater. Monitoring van adsorptielagen dient zich te richten op de kwaliteit van de adsorptielaag en de bodem daaronder

    Identification and quantification of gaseous organic compounds emitted from biomass burning using two-dimensional gas chromatography/time-of-flight mass spectrometry

    Get PDF
    The current understanding of secondary organic aerosol (SOA) formation within biomass burning (BB) plumes is limited by the incomplete identification and quantification of the non-methane organic compounds (NMOCs) emitted from such fires. Gaseous organic compounds were collected on sorbent cartridges during laboratory burns as part of the fourth Fire Lab at Missoula Experiment (FLAME-4), with analysis by two-dimensional gas chromatography/time-of-flight mass spectrometry (GCĂ—GC/TOFMS). The sensitivity and resolving power of GCĂ—GC/TOFMS allowed the acquisition of the most extensive data set of BB NMOCs to date, with measure ments for 722 positively or tentatively identified compounds. Estimated emission factors (EFs) are presented for these compounds for burns of six different vegetative fuels, including conifer branches, grasses, agricultural residue, and peat. The number of compounds detected from individual burns ranged from 129 to 474, and included extensive isomer groups. For example, 38 monoterpene isomers were observed in the emissions from coniferous fuels; the isomeric ratios were found to be consistent with those reported in relevant essential oils, suggesting that the composition of such oils may be very useful when predicting fuel-dependent terpene emissions. Further, eleven sesquiterpenes were detected and tentatively identified, providing the first reported speciation of sesquiterpenes in gas-phase BB emissions. The calculated EFs for all measured compounds are compared and discussed in the context of potential SOA formation

    Identification and quantification of gaseous organic compounds emitted from biomass burning using two-dimensional gas chromatography–time-of-flight mass spectrometry

    Get PDF
    The current understanding of secondary organic aerosol (SOA) formation within biomass burning (BB) plumes is limited by the incomplete identification and quantification of the non-methane organic compounds (NMOCs) emitted from such fires. Gaseous organic compounds were collected on sorbent cartridges during laboratory burns as part of the fourth Fire Lab at Missoula Experiment (FLAME-4) and analyzed by two-dimensional gas chromatography-time-of-flight mass spectrometry (GC x GC-ToFMS). The sensitivity and resolving power of GC x GC-ToFMS allowed the acquisition of the most extensive data set of BB NMOCs to date, with measurements from 708 positively or tentatively identified compounds. Estimated emission factors (EFs) are presented for these compounds for burns of six different vegetative fuels, including conifer branches, grasses, agricultural residue, and peat. The number of compounds meeting the peak selection criteria ranged from 129 to 474 among individual burns, and included extensive isomer groups. For example, 38 monoterpene isomers were observed in the emissions from coniferous fuels; the isomeric ratios were found to be consistent with those reported in relevant essential oils, suggested that the composition of such oils may be very useful when predicting fuel-dependent terpene emissions. Further, 11 sesquiterpenes were deteched and tentatively identified, providing the first reported speciation of sesquiterpenes in gas-phase BB emissions. The calculated EFs for all measured compounds are compared and discussed in the context of potential SOA formation

    Early Advanced LIGO binary neutron-star sky localization and parameter estimation

    Get PDF
    2015 will see the first observations of Advanced LIGO and the start of the gravitational-wave (GW) advanced-detector era. One of the most promising sources for ground-based GW detectors are binary neutron-star (BNS) coalescences. In order to use any detections for astrophysics, we must understand the capabilities of our parameter-estimation analysis. By simulating the GWs from an astrophysically motivated population of BNSs, we examine the accuracy of parameter inferences in the early advanced-detector era. We find that sky location, which is important for electromagnetic follow-up, can be determined rapidly (~5 s), but that sky areas may be hundreds of square degrees. The degeneracy between component mass and spin means there is significant uncertainty for measurements of the individual masses and spins; however, the chirp mass is well measured (typically better than 0.1%).Comment: 4 pages, 2 figures. Published in the proceedings of Amaldi 1

    Weak Lensing from Space I: Instrumentation and Survey Strategy

    Full text link
    A wide field space-based imaging telescope is necessary to fully exploit the technique of observing dark matter via weak gravitational lensing. This first paper in a three part series outlines the survey strategies and relevant instrumental parameters for such a mission. As a concrete example of hardware design, we consider the proposed Supernova/Acceleration Probe (SNAP). Using SNAP engineering models, we quantify the major contributions to this telescope's Point Spread Function (PSF). These PSF contributions are relevant to any similar wide field space telescope. We further show that the PSF of SNAP or a similar telescope will be smaller than current ground-based PSFs, and more isotropic and stable over time than the PSF of the Hubble Space Telescope. We outline survey strategies for two different regimes - a ``wide'' 300 square degree survey and a ``deep'' 15 square degree survey that will accomplish various weak lensing goals including statistical studies and dark matter mapping.Comment: 25 pages, 8 figures, 1 table, replaced with Published Versio

    Supernova / Acceleration Probe: A Satellite Experiment to Study the Nature of the Dark Energy

    Full text link
    The Supernova / Acceleration Probe (SNAP) is a proposed space-based experiment designed to study the dark energy and alternative explanations of the acceleration of the Universe's expansion by performing a series of complementary systematics-controlled measurements. We describe a self-consistent reference mission design for building a Type Ia supernova Hubble diagram and for performing a wide-area weak gravitational lensing study. A 2-m wide-field telescope feeds a focal plane consisting of a 0.7 square-degree imager tiled with equal areas of optical CCDs and near infrared sensors, and a high-efficiency low-resolution integral field spectrograph. The SNAP mission will obtain high-signal-to-noise calibrated light-curves and spectra for several thousand supernovae at redshifts between z=0.1 and 1.7. A wide-field survey covering one thousand square degrees resolves ~100 galaxies per square arcminute. If we assume we live in a cosmological-constant-dominated Universe, the matter density, dark energy density, and flatness of space can all be measured with SNAP supernova and weak-lensing measurements to a systematics-limited accuracy of 1%. For a flat universe, the density-to-pressure ratio of dark energy can be similarly measured to 5% for the present value w0 and ~0.1 for the time variation w'. The large survey area, depth, spatial resolution, time-sampling, and nine-band optical to NIR photometry will support additional independent and/or complementary dark-energy measurement approaches as well as a broad range of auxiliary science programs. (Abridged)Comment: 40 pages, 18 figures, submitted to PASP, http://snap.lbl.go

    Association of a Fasting Glucose Genetic Risk Score With Subclinical Atherosclerosis: The Atherosclerosis Risk in Communities (ARIC) Study

    Get PDF
    Elevated fasting glucose level is associated with increased carotid intima-media thickness (IMT), a measure of subclinical atherosclerosis. It is unclear if this association is causal. Using the principle of Mendelian randomization, we sought to explore the causal association between circulating glucose and IMT by examining the association of a genetic risk score with IMT. The sample was drawn from the Atherosclerosis Risk in Communities (ARIC) study and included 7,260 nondiabetic Caucasian individuals with IMT measurements and relevant genotyping. Components of the fasting glucose genetic risk score (FGGRS) were selected from a fasting glucose genome-wide association study in ARIC. The score was created by combining five single nucleotide polymorphisms (SNPs) (rs780094 [GCKR], rs560887 [G6PC2], rs4607517 [GCK], rs13266634 [SLC30A8], and rs10830963 [MTNR1B]) and weighting each SNP by its strength of association with fasting glucose. IMT was measured through bilateral carotid ultrasound. Mean IMT was regressed on the FGGRS and on the component SNPs, individually. The FGGRS was significantly associated (P = 0.009) with mean IMT. The difference in IMT predicted by a 1 SD increment in the FGGRS (0.0048 mm) was not clinically relevant but was larger than would have been predicted based on observed associations between the FFGRS, fasting glucose, and IMT. Additional adjustment for baseline measured glucose in regression models attenuated the association by about one third. The significant association of the FGGRS with IMT suggests a possible causal association of elevated fasting glucose with atherosclerosis, although it may be that these loci influence IMT through nonglucose pathways
    • …
    corecore