346 research outputs found

    Design framework for multifunctional additive manufacturing: placement and routing of three-dimensional printed circuit volumes

    Get PDF
    A framework for the design of additively manufactured (AM) multimaterial parts with embedded functional systems is presented (e.g., structure with electronic/electrical components and associated conductive paths). Two of the key strands of this proposed framework are placement and routing strategies, which consist of techniques to exploit the true-3D design freedoms of multifunctional AM (MFAM) to create 3D printed circuit volumes (PCVs). Example test cases are presented, which demonstrate the appropriateness and effectiveness of the proposed techniques. The aim of the proposed design framework is to enable exploitation of the rapidly developing capabilities of multimaterial AM

    Evidence of Twisting and Mixed-polarity Solar Photospheric Magnetic Field in Large Penumbral Jets: IRIS and Hinode Observations

    Full text link
    A recent study using {\it Hinode} (SOT/FG) data of a sunspot revealed some unusually large penumbral jets that often repeatedly occurred at the same locations in the penumbra, namely at the tail of a penumbral filament or where the tails of multiple penumbral filaments converged. These locations had obvious photospheric mixed-polarity magnetic flux in \NaI\ 5896 Stokes-V images obtained with SOT/FG. Several other recent investigations have found that extreme ultraviolet (EUV)/X-ray coronal jets in quiet Sun regions (QRs), coronal holes (CHs) and near active regions (ARs) have obvious mixed-polarity fluxes at their base, and that magnetic flux cancellation prepares and triggers a minifilament flux-rope eruption that drives the jet. Typical QR, CH, and AR coronal jets are up to a hundred times bigger than large penumbral jets, and in EUV/X-ray images show clear twisting motion in their spires. Here, using IRIS \MgII\ k 2796 \AA\ SJ images and spectra in the penumbrae of two sunspots we characterize large penumbral jets. We find redshift and blueshift next to each other across several large penumbral jets, and interpret these as untwisting of the magnetic field in the jet spire. Using Hinode/SOT (FG and SP) data, we also find mixed-polarity magnetic flux at the base of these jets. Because large penumbral jets have mixed-polarity field at their base and have twisting motion in their spires, they might be driven the same way as QR, CH and AR coronal jets.Comment: 18 pages, 11 figures; to appear in Ap

    Design framework for multifunctional additive manufacturing: coupled optimization strategy for structures with embedded functional systems

    Get PDF
    The driver for this research is the development of multi-material additive manufacturing processes that provide the potential for multi-functional parts to be manufactured in a single operation. In order to exploit the potential benefits of this emergent technology, new design, analysis and optimization methods are needed. This paper presents a method that enables in the optimization of a multifunctional part by coupling both the system and structural design aspects. This is achieved by incorporating the effects of a system, comprised of a number of connected functional components, on the structural response of a part within a structural topology optimization procedure. The potential of the proposed method is demonstrated by performing a coupled optimization on a cantilever plate with integrated components and circuitry. The results demonstrate that the method is capable of designing an optimized multifunctional part in which both the structural and system requirements are considered

    What is the risk of death or severe harm due to bone cement implantation syndrome among patients undergoing hip hemiarthroplasty for fractured neck of femur? A patient safety surveillance study.

    Get PDF
    OBJECTIVE: To estimate the risk of death or severe harm due to bone cement implantation syndrome (BCIS) among patients undergoing hip hemiarthroplasty for fractured neck of femur. SETTING: Hospitals providing secondary and tertiary care throughout the National Health Service (NHS) in England and Wales. PARTICIPANTS: Cases reported to the National Reporting and Learning System (NRLS) in which the reporter clearly describes severe acute patient deterioration associated with cement use in hip hemiarthroplasty for fractured neck of femur (assessed independently by two reviewers). OUTCOME MEASURES: Primary-number of reported deaths, cardiac arrests and periarrests per year. Secondary-timing of deterioration and outcome in relation to cement insertion. RESULTS: Between 2005 and 2012, the NRLS received 62 reports that clearly describe death or severe harm associated with the use of cement in hip hemiarthroplasty for fractured neck of femur. There was one such incident for every 2900 hemiarthroplasties for fractured neck of femur during the period. Of the 62 reports, 41 patients died, 14 were resuscitated from cardiac arrest and 7 from periarrest. Most reports (55/62, 89%) describe acute deterioration occurring during or within a few minutes of cement insertion. The vast majority of deaths (33/41, 80%) occurred on the operating table. CONCLUSIONS: These reports provide narrative evidence from England and Wales that cement use in hip hemiarthroplasty for fractured neck of femur is associated with instances of perioperative death or severe harm consistent with BCIS. In 2009, the National Patient Safety Agency publicised this issue and encouraged the use of mitigation measures. Three-quarters of the deaths in this study have occurred since that alert, suggesting incomplete implementation or effectiveness of those mitigation measures. There is a need for stronger evidence that weighs the risks and benefits of cement in hip hemiarthroplasty for fractured neck of femur

    A CME-Producing Solar Eruption from the Interior of an Emerging Bipolar Active Region

    Get PDF
    In a negative-polarity coronal hole, magnetic flux emergence, seen by the Solar Dynamics Observatory's {SDO) Helioseismic Magnetic lmager (HMI), begins at approximately 19:00 UT on March 3, 2016. The emerged magnetic field produced sunspots, which NOAA numbered 12514 two days later. The emerging magnetic field is largely bipolar with the opposite-polarity fluxes spreading apart overall, but there is simultaneously some convergence and cancellation of opposite-polarity flux at the polarity inversion line (PIL) inside the emerging bipole. In the first fifteen hours after emergence onset, three obvious eruptions occur, observed in the coronal EUV images from SDO's Atmospheric Imaging Assembly (AIA). The first two erupt from separate segments of the external PIL between the emerging positve-polarity flux and the extant surrounding negative-polarity flux, with the exploding magnetic field being prepared and triggered by flux cancellation at the external PIL. The emerging bipole shows obvious overall left-handed shear and/or twist in its magnetic field. The focus of th is poster is the third and largest eruption, which comes from inside the emerging bipole and blows it open to produce a CME observed by SOHO/LASCO. That eruption is preceded by flux cancellation at the emerging bipole's interior PIL, cancellation that plausibly builds a sheared and twisted flux rope above the interior PIL and finally triggers the blow-out eruption of the flux rope via photospheric-convectiondriven slow tether-cutting reconnection of the legs of the sheared core field, low above the interior PIL, as proposed by van Ballegooijen & Martens (1989) and Moore & Roumeliotis (1992). The production of this eruption is a (perhaps rare) counterexample to solar eruptions that result from external collisional shearing between opposite polarities from two distinct emerging and/or emerged bipoles (Chintzoglou et al. 2019)

    ENVIRONMENTAL IMPACTS OF USING DESALINATED WATER IN CONCRETE PRODUCTION IN AREAS AFFECTED BY FRESHWATER SCARCITY

    Get PDF
    Up to 500 litres of water may be consumed at the batching plant per cubic meter of ready mix concrete, if water for washing mixing trucks and equipment is included. Demand for concrete is growing almost everywhere, regardless of local availability of freshwater. The use of freshwater for concrete production exacerbates stress on natural water resources. In water-stressed coastal countries such as Israel, desalinated seawater (DSW) is often used in the production of concrete. However, the environmental impacts of this practice have not yet been assessed. In this study the effect of using DSW on the water and carbon footprints of concrete was investigated using life cycle assessment. Water footprint results highlight the benefits of using DSW rather than freshwater to produce concrete in Israel. In contrast, because desalination is an energy intensive process, using DSW increases the greenhouse gas intensity of concrete. Nevertheless, this increase (0.27 kg CO2e/m3 concrete) is small, if compared to the life cycle greenhouse gas emissions of concrete. Our results show that using untreated seawater in the mix (transported by truck from the coast) in place of DSW, would be beneficial in terms of water and carbon footprints if the batching plant were located less than 13 km from the withdrawal point. However, use of untreated seawater increases steel reinforcement corrosion, resulting in loss of structural integrity of the reinforced concrete composite. Sustainability of replacing steel with non-corrosive materials should be explored as a way to reduce both water and carbon footprints of concrete

    The role of cyclooxygenase-1 and cyclooxygenase-2 in lipopolysaccharide and interleukin-1 stimulated enterocyte prostanoid formation.

    Get PDF
    Lipopolysaccharide is an inflammatory agent and interleukin-1 is a cytokine. Their pro-inflammatory effects may be mediated by prostanoids produced by inducible cyclooxygenase-2. The aim of this study was to determine the prostanoids produced by lipopolysaccharide and interleukin-1 stimulated enterocytes through the cyclooxygenase-1 and 2 pathways. Cultured enterocytes were stimulated with lipopolysaccharide or interleukin-1beta with and without cyclooxygenase inhibitors. Low concentrations of indomethacin and valerylsalicylic acid (VSA) were evaluated as cyclooxygenase-1 inhibitors and their effects compared with the effects of a specific cyclooxygenase-2 inhibitor, SC-58125. Prostaglandin E2, 6-keto prostaglandin F1alpha, prostaglandin D2 and leukotriene B4 levels were determined by radioimmunoassay. Immunoblot analysis using isoform-specific antibodies showed that the inducible cyclooxygenase enzyme (COX-2) was expressed by 4 h in LPS and IL-1beta treated cells while the constitutive COX-1 remained unaltered in its expression. Interleukin-1beta and lipopolysaccharide stimulated the formation of all prostanoids compared with untreated cells, but failed to stimulate leukotriene B4. Indomethacin at 20 microM concentration, and VSA inhibited lipopolysaccharide and interleukin 1beta stimulated prostaglandin E2, but not 6-keto prostaglandin F1alpha formation. SC-58125 inhibited lipopolysaccharide and interleukin-1beta stimulated 6-keto prostaglandin F1alpha but not prostaglandin E2 release. The specific cyclooxygenase-2 inhibitor also inhibited lipopolysaccharide produced prostaglandin D2 but not interleukin-1beta stimulated prostaglandin D2. While SC-58125 inhibited basal 6-keto prostaglandin-F1alpha formation it significantly increased basal prostaglandin E2 and prostaglandin D2 formation. As SC-58125 inhibited lipopolysaccharide and interleukin-1beta induced 6-keto prostaglandin F1alpha production but not prostaglandin E2 production, it suggests that these agents stimulate prostacyclin production through a cyclooxygenase-2 mediated mechanism and prostaglandin E2 production occurs through a cyclooxygenase-1 mediated mechanism. Prostaglandin D2 production appeared to be variably produced by cyclooxygenase-1 or cyclooxygenase-2, depending on the stimulus

    Insights into the mechanical properties of several triply periodic minimal surface lattice structures made by polymer additive manufacturing

    Get PDF
    Three-dimensional lattices have applications across a range of fields including structural lightweighting, impact absorption and biomedicine. In this work, lattices based on triply periodic minimal surfaces were produced by polymer additive manufacturing and examined with a combination of experimental and computational methods. This investigation elucidates their deformation mechanisms and provides numerical parameters crucial in establishing relationships between their geometries and mechanical performance. Three types of lattice were examined, with one, known as the primitive lattice, being found to have a relative elastic modulus over twice as large as those of the other two. The deformation process of the primitive lattice was also considerably different from those of the other two, exhibiting strut stretching and buckling, while the gyroid and diamond lattices deformed in a bending dominated manner. Finite element predictions of the stress distributions in the lattices under compressive loading agreed with experimental observations. These results can be used to create better informed lattice designs for a range of mechanical and biomedical applications
    • …
    corecore