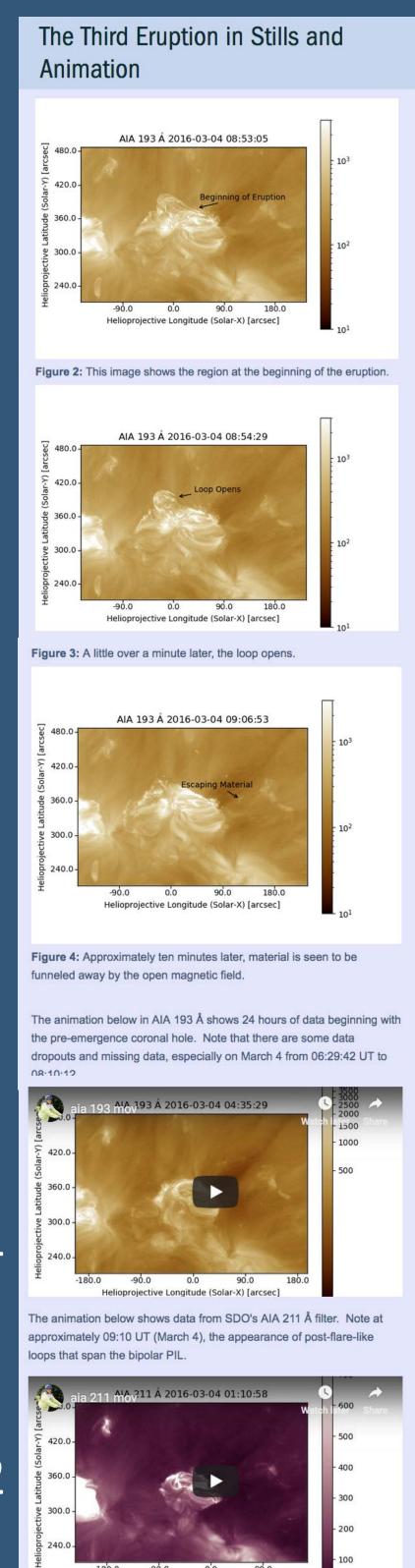
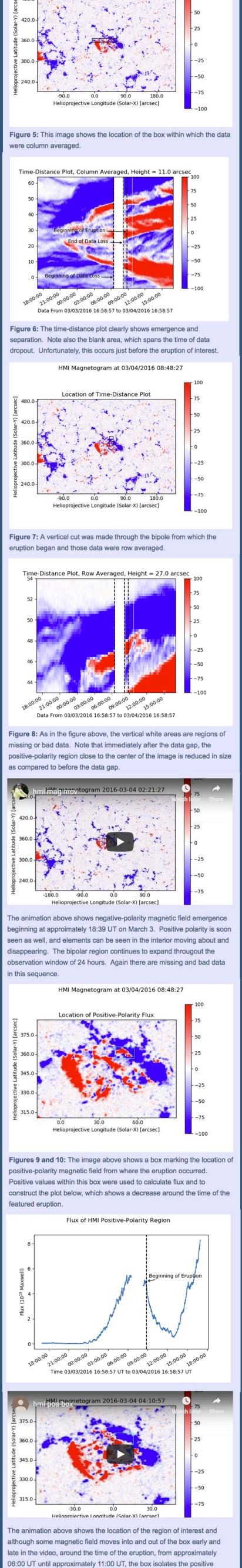

brought to you by TCORE

Abstract


In a negative-polarity coronal hole, magnetic flux emergence, seen by the Solar Dynamics Observatory's (SDO) Helioseismic Magnetic Imager (HMI), begins at approximately 19:00 UT on March 3, 2016. The emerged magnetic field produced sunspots, which NOAA numbered 12514 two days later. The emerging magnetic field is largely bipolar with the opposite-polarity fluxes spreading apart overall, but there is simultaneously some convergence and cancellation of opposite-polarity flux at the polarity inversion line (PIL) inside the emerging bipole. In the first fifteen hours after emergence onset, three obvious eruptions occur, observed in the coronal EUV images from SDO's Atmospheric Imaging Assembly (AIA). The first two erupt from separate segments of the external PIL between the emerging positve-polarity flux and the extant surrounding negative-polarity flux, with the exploding magnetic field being prepared and triggered by flux cancellation at the external PIL. The emerging bipole shows obvious overall

left-handed shear and/or twist in its magnetic field. The focus of this poster is the third and largest eruption, which comes from inside the emerging bipole and blows it open to produce a CME observed by SOHO/LASCO. That eruption is preceded by flux cancellation at the emerging bipole's interior PIL, cancellation that plausibly builds a sheared and twisted flux rope above the

interior PIL and finally triggers the blow-out eruption of the flux rope via photospheric-convection-driven slow tether-cutting reconnection of the legs of the sheared core field, low above the interior PIL, as proposed by van Ballegooijen & Martens (1989) and Moore & Roumeliotis (1992). The production of this eruption is a (perhaps rare) counterexample to solar eruptions that result from external collisional shearing between opposite polarities from two distinct emerging and/or emerged bipoles (Chintzoglou et al. 2019).


The Region of Interest Figure 1: A full-disk AIA 193 Å image with corresponding HMI

magnetogram. The region of interest marked by the box shows the area where a brightening was observed in multiple AIA wavelengths (e.g., 211 Å, 304 Å) that also corresponds to emerging magnetic flux. The bottom panels show the zoomed in field-of-view of the boxed region. The data are from 2016 March 4, 08:28:29 UT.

Helioprojective Longitude (Solar-X) [arcsec]

Figure 5: This image shows the location of the box within which the data were column averaged. Time-Distance Plot, Column Averaged, Height = 11.0 arcsec Data From 03/03/2016 16:58:57 to 03/04/2016 16:58:57 Figure 6: The time-distance plot clearly shows emergence and separation. Note also the blank area, which spans the time of data dropout. Unfortunately, this occurs just before the eruption of interest. HMI Magnetogram at 03/04/2016 08:48:27 Location of Time-Distance Plot -25-50 Helioprojective Longitude (Solar-X) [arcsec] Figure 7: A vertical cut was made through the bipole from which the eruption began and those data were row averaged. Time-Distance Plot, Row Averaged, Height = 27.0 arcsec Figure 8: As in the figure above, the vertical white areas are regions of missing or bad data. Note that immediately after the data gap, the as compared to before the data gap. etogram 2016-03-04 02:21:27 -25 -50 Helioprojective Longitude (Solar-X) [arcsec] The animation above shows negative-polarity magnetic field emergence disappearing. The bipolar region continues to expand througout the observation window of 24 hours. Again there are missing and bad data in this sequence. HMI Magnetogram at 03/04/2016 08:48:27 315.0 -75 Helioprojective Longitude (Solar-X) [arcsec] positive-polarity magnetic field from where the eruption occurred. Positive values within this box were used to calculate flux and to featured eruption. Flux of HMI Positive-Polarity Region Time 03/03/2016 16:58:57 UT to 03/04/2016 16:58:57 UT 330.0

Magnetic Evolution: Time-Distance

HMI Magnetogram at 03/04/2016 08:48:27

Location of Time-Distance Plot

Plots, Animation

The CME

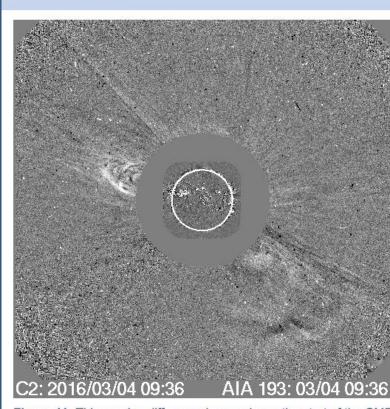


Figure 11: This running difference image shows the start of the CME, focus on the north-pole region.

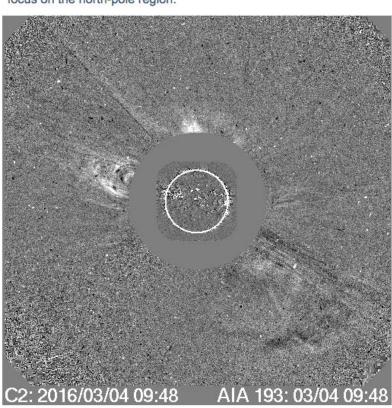


Figure 12: The CME is seen emerging from the edge of the occulting

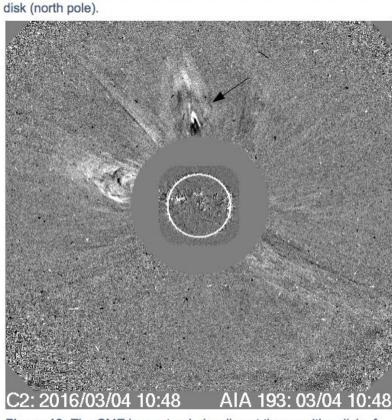


Figure 13: The CME has extended well past the occulting disk of SOHO/LASCO C2.

Summary

We have seen the emergence of the line-of-sight component of the magnetic field in a small coronal hole, which produced several eruptions, one of which is highlighted in this poster. This eruption occurred on the inside of the emerging-flux region, was triggered by flux cancellation there, and produced a flare and CME. Future work will involve searching for other examples of this behavior.

Movie 1:

Movie 2:

Movie 3:

Movie 4:

polarity field.