144 research outputs found

    A Quartic Conformally Covariant Differential Operator for Arbitrary Pseudo-Riemannian Manifolds (Summary)

    Get PDF
    This is the original manuscript dated March 9th 1983, typeset by the Editors for the Proceedings of the Midwest Geometry Conference 2007 held in memory of Thomas Branson. Stephen Paneitz passed away on September 1st 1983 while attending a conference in Clausthal and the manuscript was never published. For more than 20 years these few pages were circulated informally. In November 2004, as a service to the mathematical community, Tom Branson added a scan of the manuscript to his website. Here we make it available more formally. It is surely one of the most cited unpublished articles. The differential operator defined in this article plays a key role in conformal differential geometry in dimension 4 and is now known as the Paneitz operator.Comment: This is a contribution to the Proceedings of the 2007 Midwest Geometry Conference in honor of Thomas P. Branson, published in SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) at http://www.emis.de/journals/SIGMA

    Indecomposable finite-dimensional representations of a class of Lie algebras and Lie superalgebras

    Full text link
    In the article at hand, we sketch how, by utilizing nilpotency to its fullest extent (Engel, Super Engel) while using methods from the theory of universal enveloping algebras, a complete description of the indecomposable representations may be reached. In practice, the combinatorics is still formidable, though. It turns out that the method applies to both a class of ordinary Lie algebras and to a similar class of Lie superalgebras. Besides some examples, due to the level of complexity we will only describe a few precise results. One of these is a complete classification of which ideals can occur in the enveloping algebra of the translation subgroup of the Poincar\'e group. Equivalently, this determines all indecomposable representations with a single, 1-dimensional source. Another result is the construction of an infinite-dimensional family of inequivalent representations already in dimension 12. This is much lower than the 24-dimensional representations which were thought to be the lowest possible. The complexity increases considerably, though yet in a manageable fashion, in the supersymmetric setting. Besides a few examples, only a subclass of ideals of the enveloping algebra of the super Poincar\'e algebra will be determined in the present article.Comment: LaTeX 14 page

    Positive mass theorem for the Paneitz-Branson operator

    Get PDF
    We prove that under suitable assumptions, the constant term in the Green function of the Paneitz-Branson operator on a compact Riemannian manifold (M,g)(M,g) is positive unless (M,g)(M,g) is conformally diffeomophic to the standard sphere. The proof is inspired by the positive mass theorem on spin manifolds by Ammann-Humbert.Comment: 7 page

    A New Family of Gauges in Linearized General Relativity

    Get PDF
    For vacuum Maxwell theory in four dimensions, a supplementary condition exists (due to Eastwood and Singer) which is invariant under conformal rescalings of the metric, in agreement with the conformal symmetry of the Maxwell equations. Thus, starting from the de Donder gauge, which is not conformally invariant but is the gravitational counterpart of the Lorenz gauge, one can consider, led by formal analogy, a new family of gauges in general relativity, which involve fifth-order covariant derivatives of metric perturbations. The admissibility of such gauges in the classical theory is first proven in the cases of linearized theory about flat Euclidean space or flat Minkowski space-time. In the former, the general solution of the equation for the fulfillment of the gauge condition after infinitesimal diffeomorphisms involves a 3-harmonic 1-form and an inverse Fourier transform. In the latter, one needs instead the kernel of powers of the wave operator, and a contour integral. The analysis is also used to put restrictions on the dimensionless parameter occurring in the DeWitt supermetric, while the proof of admissibility is generalized to a suitable class of curved Riemannian backgrounds. Eventually, a non-local construction is obtained of the tensor field which makes it possible to achieve conformal invariance of the above gauges.Comment: 28 pages, plain Tex. In the revised version, sections 4 and 5 are completely ne

    Singular limits for the bi-laplacian operator with exponential nonlinearity in R4\R^4

    Get PDF
    Let Ω\Omega be a bounded smooth domain in R4\mathbb{R}^{4} such that for some integer d1d\geq1 its dd-th singular cohomology group with coefficients in some field is not zero, then problem {\Delta^{2}u-\rho^{4}k(x)e^{u}=0 & \hbox{in}\Omega, u=\Delta u=0 & \hbox{on}\partial\Omega, has a solution blowing-up, as ρ0\rho\to0, at mm points of Ω\Omega, for any given number mm.Comment: 30 pages, to appear in Ann. IHP Non Linear Analysi

    Vacuum polarization in Schwarzschild space-time by anomaly induced effective actions

    Full text link
    The characteristic features of in the Boulware, Unruh and Hartle-Hawking states for a conformal massless scalar field propagating in the Schwarzschild space-time are obtained by means of effective actions deduced by the trace anomaly. The actions are made local by the introduction of auxiliary fields and boundary conditions are carefully imposed on them in order to select the different quantum states.Comment: 20 pages, latex; misprints corrected and references adde

    Back reaction of vacuum and the renormalization group flow from the conformal fixed point

    Full text link
    We consider the GUT-like model with two scalar fields which has infinitesimal deviation from the conformal invariant fixed point at high energy region. In this case the dominating quantum effect is the conformal trace anomaly and the interaction between the anomaly-generated propagating conformal factor of the metric and the usual dimensional scalar field. This interaction leads to the renormalization group flow from the conformal point. In the supersymmetric conformal invariant model such an effect produces a very weak violation of sypersymmetry at lower energies.Comment: 15 pages, LaTex, ten figures, uuencoded fil

    Quantum mechanics on spaces of nonconstant curvature: the oscillator problem and superintegrability

    Full text link
    The full spectrum and eigenfunctions of the quantum version of a nonlinear oscillator defined on an N-dimensional space with nonconstant curvature are rigorously found. Since the underlying curved space generates a position-dependent kinetic energy, three different quantization prescriptions are worked out by imposing that the maximal superintegrability of the system has to be preserved after quantization. The relationships among these three Schroedinger problems are described in detail through appropriate similarity transformations. These three approaches are used to illustrate different features of the quantization problem on N-dimensional curved spaces or, alternatively, of position-dependent mass quantum Hamiltonians. This quantum oscillator is, to the best of our knowledge, the first example of a maximally superintegrable quantum system on an N-dimensional space with nonconstant curvature.Comment: 26 pages, 5 figure

    Conformally invariant bending energy for hypersurfaces

    Full text link
    The most general conformally invariant bending energy of a closed four-dimensional surface, polynomial in the extrinsic curvature and its derivatives, is constructed. This invariance manifests itself as a set of constraints on the corresponding stress tensor. If the topology is fixed, there are three independent polynomial invariants: two of these are the straighforward quartic analogues of the quadratic Willmore energy for a two-dimensional surface; one is intrinsic (the Weyl invariant), the other extrinsic; the third invariant involves a sum of a quadratic in gradients of the extrinsic curvature -- which is not itself invariant -- and a quartic in the curvature. The four-dimensional energy quadratic in extrinsic curvature plays a central role in this construction.Comment: 16 page

    Logarithmic correction to BH entropy as Noether charge

    Get PDF
    We consider the role of the type-A trace anomaly in static black hole solutions to semiclassical Einstein equation in four dimensions. Via Wald's Noether charge formalism, we compute the contribution to the entropy coming from the anomaly induced effective action and unveil a logarithmic correction to the Bekenstein-Hawking area law. The corrected entropy is given by a seemingly universal formula involving the coefficient of the type-A trace anomaly, the Euler characteristic of the horizon and the value at the horizon of the solution to the uniformization problem for Q-curvature. Two instances are examined in detail: Schwarzschild and a four-dimensional massless topological black hole. We also find agreement with the logarithmic correction due to one-loop contribution of conformal fields in the Schwarzschild background.Comment: 14 pages, JHEP styl
    corecore