48 research outputs found

    Geophysical upheavals and evolutionary diversification of plant species in the Himalaya

    Get PDF
    The Himalaya is one of the youngest and the loftiest mountain chains of the world; it is also referred to as the water tower of Asia. The Himalayan region harbors nearly 10,000 plant species constituting approximately 2.5% of the global angiosperm diversity of which over 4,000 are endemics. The present-day Himalayan flora consists of an admixture of immigrant taxa and diversified species over the last 40 million years. The interesting questions about the Himalayan flora discussed here are: how did the Himalaya achieve high endemic plant diversity starting with immigrant taxa and what were the main drivers of this diversity? This contribution aims to answer these questions and raise some more. We review and analyze existing information from diverse areas of earth and climate sciences, palaeobiology and phytogeography to evolve a bio-chronological record of plant species divergence and evolution in the Himalaya. From the analysis we infer the effects of major environmental upheavals on plant diversity in the region. The understanding developed in the following discussion is based on the idea that Himalaya experienced at least five phases of major geophysical upheavals, namely: (i) mega-collision between India and Eurasian plates, (ii) tectonic uplift in phases and progressive landform elevation, (iii) onset of southwest (SW) Indian monsoon, (iv) spurring of arid conditions in Central Asia, and (v) cyclic phases of cooling and warming in the Quaternary. The geophysical upheavals that were potentially disrupting for the ecosystem stability had a key role in providing impetus for biological diversification. The upheavals produced new geophysical environments, new ecological niches, imposed physical and physiological isolation barriers, acted as natural selection sieves and led to the formation of new species. This contribution aims to develop a comprehensive understanding of the plant biodiversity profile of the Himalaya in the context of complex, interconnected and dynamic relationship between earth system processes, climate and plant diversity

    Widespread forest vertebrate extinctions induced by a mega hydroelectric dam in lowland Amazonia

    Get PDF
    Mega hydropower projects in tropical forests pose a major emergent threat to terrestrial and freshwater biodiversity worldwide. Despite the unprecedented number of existing, underconstruction and planned hydroelectric dams in lowland tropical forests, long-term effects on biodiversity have yet to be evaluated. We examine how medium and large-bodied assemblages of terrestrial and arboreal vertebrates (including 35 mammal, bird and tortoise species) responded to the drastic 26-year post-isolation history of archipelagic alteration in landscape structure and habitat quality in a major hydroelectric reservoir of Central Amazonia. The Balbina Hydroelectric Dam inundated 3,129 km2 of primary forests, simultaneously isolating 3,546 land-bridge islands. We conducted intensive biodiversity surveys at 37 of those islands and three adjacent continuous forests using a combination of four survey techniques, and detected strong forest habitat area effects in explaining patterns of vertebrate extinction. Beyond clear area effects, edge-mediated surface fire disturbance was the most important additional driver of species loss, particularly in islands smaller than 10 ha. Based on species-area models, we predict that only 0.7% of all islands now harbor a species-rich vertebrate assemblage consisting of ≥80% of all species. We highlight the colossal erosion in vertebrate diversity driven by a man-made dam and show that the biodiversity impacts of mega dams in lowland tropical forest regions have been severely overlooked. The geopolitical strategy to deploy many more large hydropower infrastructure projects in regions like lowland Amazonia should be urgently reassessed, and we strongly advise that long-term biodiversity impacts should be explicitly included in pre-approval environmental impact assessments

    Predicting River Macroinvertebrate Communities Distributional Shifts under Future Global Change Scenarios in the Spanish Mediterranean Area

    Get PDF
    Several studies on global change over the next century predict increases in mean air temperatures of between 1°C to 5°C that would affect not only water temperature but also river flow. Climate is the predominant environmental driver of thermal and flow regimes of freshwater ecosystems, determining survival, growth, metabolism, phenology and behaviour as well as biotic interactions of aquatic fauna. Thus, these changes would also have consequences for species phenology, their distribution range, and the composition and dynamics of communities. These effects are expected to be especially severe in the Mediterranean basin due its particular climate conditions, seriously threatening Southern European ecosystems. In addition, species with restricted distributions and narrow ecological requirements, such as those living in the headwaters of rivers, will be severely affected. The study area corresponds to the Spanish Mediterranean and Balearic Islands, delimited by the Köppen climate boundary. With the application of the MEDPACS (MEDiterranean Prediction And Classification System) predictive approach, the macroinvertebrate community was predicted for current conditions and compared with three posible scenarios of watertemperature increase and its associated water flow reductions. The results indicate that the aquatic macroinvertebrate communities will undergo a drastic impact, with reductions in taxa richness for each scenario in relation to simulated current conditions, accompanied by changes in the taxa distribution pattern. Accordingly, the distribution area of most of the taxa (65.96%) inhabiting the mid-high elevations would contract and rise in altitude. Thus, families containing a great number of generalist species will move upstream to colonize new zones with lower water temperatures. By contrast, more vulnerable taxa will undergo reductions in their distribution area.This work was funded by GUADALMED-II (REN2001-3438-C07-06/HID), a project of excellence from “Junta de Andalucía” (RNM-02654/FEDER), the Spanish “Ministerio de Ciencia e Innovación” (CGL2007-61856/BOS), projects and a collaboration agreement between the “Spanish Ministerio de Medio Ambiente, Medio Rural y Marino” and the University of Granada (21.812-0062/8511)

    The Relative Impact of Climate Change on the Extinction Risk of Tree Species in the Montane Tropical Andes.

    Get PDF
    There are widespread concerns that anthropogenic climate change will become a major cause of global biodiversity loss. However, the potential impact of climate change on the extinction risk of species remains poorly understood, particularly in comparison to other current threats. The objective of this research was to examine the relative impact of climate change on extinction risk of upper montane tree species in the tropical Andes, an area of high biodiversity value that is particularly vulnerable to climate change impacts. The extinction risk of 129 tree species endemic to the region was evaluated according to the IUCN Red List criteria, both with and without the potential impacts of climate change. Evaluations were supported by development of species distribution models, using three methods (generalized additive models, recursive partitioning, and support vector machines), all of which produced similarly high AUC values when averaged across all species evaluated (0.82, 0.86, and 0.88, respectively). Inclusion of climate change increased the risk of extinction of 18-20% of the tree species evaluated, depending on the climate scenario. The relative impact of climate change was further illustrated by calculating the Red List Index, an indicator that shows changes in the overall extinction risk of sets of species over time. A 15% decline in the Red List Index was obtained when climate change was included in this evaluation. While these results suggest that climate change represents a significant threat to tree species in the tropical Andes, they contradict previous suggestions that climate change will become the most important cause of biodiversity loss in coming decades. Conservation strategies should therefore focus on addressing the multiple threatening processes currently affecting biodiversity, rather than focusing primarily on potential climate change impacts

    Inter-individual variability of stone marten behavioral responses to a highway

    Get PDF
    Efforts to reduce the negative impacts of roads on wildlife may be hindered if individuals within the population vary widely in their responses to roads and mitigation strategies ignore this variability. This knowledge is particularly important for medium-sized carnivores as they are vulnerable to road mortality, while also known to use available road passages (e.g., drainage culverts) for safely crossing highways. Our goal in this study was to assess whether this apparently contradictory pattern of high road-kill numbers associated with a regular use of road passages is attributable to the variation in behavioral responses toward the highway between individuals. We investigated the responses of seven radio-tracked stone martens (Martes foina) to a highway by measuring their utilization distribution, response turning angles and highway crossing patterns. We compared the observed responses to simulated movement parameterized by the observed space use and movement characteristics of each individual, but naı¨ve to the presence of the highway. Our results suggested that martens demonstrate a diversity of responses to the highway, including attraction, indifference, or avoidance. Martens also varied in their highway crossing patterns, with some crossing repeatedly at the same location (often coincident with highway passages). We suspect that the response variability derives from the individual’s familiarity of the landscape, including their awareness of highway passage locations. Because of these variable yet potentially attributable responses, we support the use of exclusionary fencing to guide transient (e.g., dispersers) individuals to existing passages to reduce the road-kill risk

    Hydropower: A low-hanging sour-sweet energy option for India

    No full text
    India is the world’s second largest populous nation, fifth largest economy with seventh largest geographical area but experiences high energy poverty. With the lowest per capita energy consumption among world’s top ten economies, India ranks at 137 out of 218 nations. Hydropower has the potential to alleviate India’s energy asymmetry as well as realize its sustainable growth aspiration of a low-carbon regime. However, hydropower in India has been plagued by debates on human displacement, loss of biodiversity, increased risk of natural disasters, and socio-economic conflicts making it an unpopular energy alternative. Here, we review and address various concerns related to India’s hydropower sector, examine scientific evidence, analyze energy policy imperatives, geopolitical considerations, and future directions for a sustainable hydropower policy in India in the context of ongoing climate change. Evidence indicates that besides electricity generation, hydropower infrastructure helps: (i) avert floods, (ii) mitigate the impacts of global warming, and (iii) ensure redistribution of water to arid regions and improve water security. As a part of sustainable hydropower policy, we propose that most of the ecological and social problems associated with hydropower development can be avoided to a great extent through careful planning, proper project design, responsible ownership, and public participation. As short-term measures, we propose: (i) entrepreneurs and planners follow credible and transparent pre-project investigations, (ii) mandatory implementation of environmental management plans, and (iii) better accountability and transparency of statutory bodies as well as hydropower developers. For long-term measures, we suggest: (i) create a ‘National Institute of Energy & Environmental Sustainability’ to oversee post-project hydropower developmental activities, (ii) streamline various bureaucratic and institutional procedures, and (ii) establish a trans-boundary water management system for seamless and coordinated implementation of hydropower development programs across upstream-downstream nations

    Elevational Gradients in Fish Diversity in the Himalaya: Water Discharge Is the Key Driver of Distribution Patterns

    Get PDF
    <div><h3>Background</h3><p>Studying diversity and distribution patterns of species along elevational gradients and understanding drivers behind these patterns is central to macroecology and conservation biology. A number of studies on biogeographic gradients are available for terrestrial ecosystems, but freshwater ecosystems remain largely neglected. In particular, we know very little about the species richness gradients and their drivers in the Himalaya, a global biodiversity hotspot.</p> <h3>Methodology/Principal Findings</h3><p>We collated taxonomic and distribution data of fish species from 16 freshwater Himalayan rivers and carried out empirical studies on environmental drivers and fish diversity and distribution in the Teesta river (Eastern Himalaya). We examined patterns of fish species richness along the Himalayan elevational gradients (50–3800 m) and sought to understand the drivers behind the emerging patterns. We used generalized linear models (GLM) and generalized additive models (GAM) to examine the richness patterns; GLM was used to investigate relationship between fish species richness and various environmental variables. Regression modelling involved stepwise procedures, including elimination of collinear variables, best model selection, based on the least Akaike’s information criterion (AIC) and the highest percentage of deviance explained (D<sup>2</sup>). This maiden study on the Himalayan fishes revealed that total and non-endemic fish species richness monotonously decrease with increasing elevation, while endemics peaked around mid elevations (700–1500 m). The best explanatory model (synthetic model) indicated that water discharge is the best predictor of fish species richness patterns in the Himalayan rivers.</p> <h3>Conclusions/Significance</h3><p>This study, carried out along one of the longest bioclimatic elevation gradients of the world, lends support to Rapoport’s elevational rule as opposed to mid domain effect hypothesis. We propose a species-discharge model and contradict species-area model in predicting fish species richness. We suggest that drivers of richness gradients in terrestrial and aquatic ecosystems are likely to be different. These studies are crucial in context of the impacts of unprecedented on-going river regulation on fish diversity and distribution in the Himalaya.</p> </div

    Environmental impact assessment of river valley projects in upper Teesta basin of Eastern Himalaya with special reference to fish conservation: a review

    No full text
    <p>Teesta river basin in Eastern Himalaya is being subjected to cascade hydropower development. To assess the impacts of this developmental activity on fish fauna of the basin, fish habitats of the four largest tributaries in the basin were selected for the present study. A total of 18 large hydroelectric projects are planned on these rivers. Here, a total of 11 EIAs and 2 carrying capacity studies in Teesta basin were reviewed. Our investigations show that after commissioning all the projects, 52–88% of the free-flowing river stretches will be diverted and 7.6–24% of the riverine ecosystems will be converted into semi lacustrine ecosystems in different rivers. The cascade hydropower development is likely to affect more than 100 fish species. All the EIA reports reviewed have investigated fish species richness, impacts on fish fauna and fishery management plans. EIA studies and management plans, however, do not adequately address important ecological and conservation issues due to various limitations. An integrated fish conservation plan for the upper Teesta basin is suggested in this contribution.</p
    corecore