44 research outputs found

    Osteoarthritis: insights into pathogenesis and futuristic treatment strategies

    Get PDF
    Osteoarthritis is the most common musculoskeletal condition world over that causes significant health, economic, and societal burdens. Till date, no therapeutic approaches have been able to stop or delay the progression of osteoarthritis satisfactorily. Structural and clinical features of the disease are characterized by a high inter-patient variability. This heterogeneity is believed to be a major factor associated with the complexity of osteoarthritis and the on-going difficulty to identify a single therapy for all sub-groups. The objective of this review is to highlight recent advances in the understanding of the pathophysiology of osteoarthritis and latest biological treatments available, their limitations and to bring to notice the latest state-of-the-art on-going research on novel therapies. For this study we searched different online databases such as PubMed and Cochrane Library from inception to January 2022. We identified eligible studies on the pathophysiologic findings, prevalence, or incidence of knee osteoarthritis, available treatments, and current research for future therapies. Besides the availability of vast literature on cartilage extracellular matrix and its changes in osteoarthritis, the complicated mechanism of the disease still has missing links in the chain. Presently, biological treatments such as platelet rich plasma, bone marrow mesenchymal stem cells and autologous fragmented adipose tissue containing structural vascular fraction are commonly used. In future, gene therapy could become a potential option for treating the disease. More extensive insights into the pathophysiology of osteoarthritis will be helpful in designing therapies that can curb structural progression and promote cartilage regeneration thus providing more potent relief from painful and disabling condition associated with osteoarthritis

    Efficacy of montelukast in the management of COVID-19: double blind randomized placebo controlled trial

    Get PDF
    Background: Objective of the study was to determine the efficacy of montelukast in reducing the severity of COVID-19 symptoms using a double blinded randomized controlled trial.Methods: Parallel, double-blinded randomized controlled trial (RCT) with placebo as comparison to montelukast. All patients above the age of 14 years both males and females, admitted with a diagnosis of mild or moderate COVID-19 (on the basis of a positive reverse transcriptase polymerase chain reaction (RT-PCR) report) at our facility during the study period from 01 September 2020-31 January 2021) and excluding those having adverse reaction to montelukast or those not willing to participate, and pregnant and lactating females. Patients in the intervention arm were given tablet montelukast 10 mg OD HS from the day of admission for 10 days. The patients in the placebo group were given an identical appearing placebo at bedtime for 10 days from the day of admission. The rest of the treatment was given as per the standard operating procedure (SOP) of the institute with minor adjustments as per the treating team’s judgement. Primary outcome was progression of the disease to severe grade and secondary outcomes were discharge on or before day 10 from admission, admission to ICU, need for mechanical ventilation and in-hospital mortality.Results: A total of 94 patients were enrolled for the study. 90 patients, 45 in each arm were included in the final analysis. The baseline characteristics of the two arms including age, sex, comorbidities, severity at admission and treatment given apart from montelukast or placebo, were comparable with respect to these variables. This study did not find any improvement in primary outcome of progression to severe disease and secondary outcomes of intensive care unit (ICU) admission, mortality or need of mechanical ventilation, discharge on or by day 10 with the use of montelukast as compared to placebo in mild to moderate cases of COVID-19.Conclusions: There was no difference in primary or secondary outcomes with the use of Montelukast compared to placebo

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity.

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant

    Hospital admission and emergency care attendance risk for SARS-CoV-2 delta (B.1.617.2) compared with alpha (B.1.1.7) variants of concern: a cohort study

    Get PDF
    Background: The SARS-CoV-2 delta (B.1.617.2) variant was first detected in England in March, 2021. It has since rapidly become the predominant lineage, owing to high transmissibility. It is suspected that the delta variant is associated with more severe disease than the previously dominant alpha (B.1.1.7) variant. We aimed to characterise the severity of the delta variant compared with the alpha variant by determining the relative risk of hospital attendance outcomes. Methods: This cohort study was done among all patients with COVID-19 in England between March 29 and May 23, 2021, who were identified as being infected with either the alpha or delta SARS-CoV-2 variant through whole-genome sequencing. Individual-level data on these patients were linked to routine health-care datasets on vaccination, emergency care attendance, hospital admission, and mortality (data from Public Health England's Second Generation Surveillance System and COVID-19-associated deaths dataset; the National Immunisation Management System; and NHS Digital Secondary Uses Services and Emergency Care Data Set). The risk for hospital admission and emergency care attendance were compared between patients with sequencing-confirmed delta and alpha variants for the whole cohort and by vaccination status subgroups. Stratified Cox regression was used to adjust for age, sex, ethnicity, deprivation, recent international travel, area of residence, calendar week, and vaccination status. Findings: Individual-level data on 43 338 COVID-19-positive patients (8682 with the delta variant, 34 656 with the alpha variant; median age 31 years [IQR 17–43]) were included in our analysis. 196 (2·3%) patients with the delta variant versus 764 (2·2%) patients with the alpha variant were admitted to hospital within 14 days after the specimen was taken (adjusted hazard ratio [HR] 2·26 [95% CI 1·32–3·89]). 498 (5·7%) patients with the delta variant versus 1448 (4·2%) patients with the alpha variant were admitted to hospital or attended emergency care within 14 days (adjusted HR 1·45 [1·08–1·95]). Most patients were unvaccinated (32 078 [74·0%] across both groups). The HRs for vaccinated patients with the delta variant versus the alpha variant (adjusted HR for hospital admission 1·94 [95% CI 0·47–8·05] and for hospital admission or emergency care attendance 1·58 [0·69–3·61]) were similar to the HRs for unvaccinated patients (2·32 [1·29–4·16] and 1·43 [1·04–1·97]; p=0·82 for both) but the precision for the vaccinated subgroup was low. Interpretation: This large national study found a higher hospital admission or emergency care attendance risk for patients with COVID-19 infected with the delta variant compared with the alpha variant. Results suggest that outbreaks of the delta variant in unvaccinated populations might lead to a greater burden on health-care services than the alpha variant. Funding: Medical Research Council; UK Research and Innovation; Department of Health and Social Care; and National Institute for Health Research

    Evaluating the Effects of SARS-CoV-2 Spike Mutation D614G on Transmissibility and Pathogenicity

    Get PDF
    Global dispersal and increasing frequency of the SARS-CoV-2 spike protein variant D614G are suggestive of a selective advantage but may also be due to a random founder effect. We investigate the hypothesis for positive selection of spike D614G in the United Kingdom using more than 25,000 whole genome SARS-CoV-2 sequences. Despite the availability of a large dataset, well represented by both spike 614 variants, not all approaches showed a conclusive signal of positive selection. Population genetic analysis indicates that 614G increases in frequency relative to 614D in a manner consistent with a selective advantage. We do not find any indication that patients infected with the spike 614G variant have higher COVID-19 mortality or clinical severity, but 614G is associated with higher viral load and younger age of patients. Significant differences in growth and size of 614G phylogenetic clusters indicate a need for continued study of this variant

    Changes in symptomatology, reinfection, and transmissibility associated with the SARS-CoV-2 variant B.1.1.7: an ecological study

    Get PDF
    Background The SARS-CoV-2 variant B.1.1.7 was first identified in December, 2020, in England. We aimed to investigate whether increases in the proportion of infections with this variant are associated with differences in symptoms or disease course, reinfection rates, or transmissibility. Methods We did an ecological study to examine the association between the regional proportion of infections with the SARS-CoV-2 B.1.1.7 variant and reported symptoms, disease course, rates of reinfection, and transmissibility. Data on types and duration of symptoms were obtained from longitudinal reports from users of the COVID Symptom Study app who reported a positive test for COVID-19 between Sept 28 and Dec 27, 2020 (during which the prevalence of B.1.1.7 increased most notably in parts of the UK). From this dataset, we also estimated the frequency of possible reinfection, defined as the presence of two reported positive tests separated by more than 90 days with a period of reporting no symptoms for more than 7 days before the second positive test. The proportion of SARS-CoV-2 infections with the B.1.1.7 variant across the UK was estimated with use of genomic data from the COVID-19 Genomics UK Consortium and data from Public Health England on spike-gene target failure (a non-specific indicator of the B.1.1.7 variant) in community cases in England. We used linear regression to examine the association between reported symptoms and proportion of B.1.1.7. We assessed the Spearman correlation between the proportion of B.1.1.7 cases and number of reinfections over time, and between the number of positive tests and reinfections. We estimated incidence for B.1.1.7 and previous variants, and compared the effective reproduction number, Rt, for the two incidence estimates. Findings From Sept 28 to Dec 27, 2020, positive COVID-19 tests were reported by 36 920 COVID Symptom Study app users whose region was known and who reported as healthy on app sign-up. We found no changes in reported symptoms or disease duration associated with B.1.1.7. For the same period, possible reinfections were identified in 249 (0·7% [95% CI 0·6–0·8]) of 36 509 app users who reported a positive swab test before Oct 1, 2020, but there was no evidence that the frequency of reinfections was higher for the B.1.1.7 variant than for pre-existing variants. Reinfection occurrences were more positively correlated with the overall regional rise in cases (Spearman correlation 0·56–0·69 for South East, London, and East of England) than with the regional increase in the proportion of infections with the B.1.1.7 variant (Spearman correlation 0·38–0·56 in the same regions), suggesting B.1.1.7 does not substantially alter the risk of reinfection. We found a multiplicative increase in the Rt of B.1.1.7 by a factor of 1·35 (95% CI 1·02–1·69) relative to pre-existing variants. However, Rt fell below 1 during regional and national lockdowns, even in regions with high proportions of infections with the B.1.1.7 variant. Interpretation The lack of change in symptoms identified in this study indicates that existing testing and surveillance infrastructure do not need to change specifically for the B.1.1.7 variant. In addition, given that there was no apparent increase in the reinfection rate, vaccines are likely to remain effective against the B.1.1.7 variant. Funding Zoe Global, Department of Health (UK), Wellcome Trust, Engineering and Physical Sciences Research Council (UK), National Institute for Health Research (UK), Medical Research Council (UK), Alzheimer's Society

    Genomic assessment of quarantine measures to prevent SARS-CoV-2 importation and transmission

    Get PDF
    Mitigation of SARS-CoV-2 transmission from international travel is a priority. We evaluated the effectiveness of travellers being required to quarantine for 14-days on return to England in Summer 2020. We identified 4,207 travel-related SARS-CoV-2 cases and their contacts, and identified 827 associated SARS-CoV-2 genomes. Overall, quarantine was associated with a lower rate of contacts, and the impact of quarantine was greatest in the 16–20 age-group. 186 SARS-CoV-2 genomes were sufficiently unique to identify travel-related clusters. Fewer genomically-linked cases were observed for index cases who returned from countries with quarantine requirement compared to countries with no quarantine requirement. This difference was explained by fewer importation events per identified genome for these cases, as opposed to fewer onward contacts per case. Overall, our study demonstrates that a 14-day quarantine period reduces, but does not completely eliminate, the onward transmission of imported cases, mainly by dissuading travel to countries with a quarantine requirement

    Genomic epidemiology of SARS-CoV-2 in a UK university identifies dynamics of transmission

    Get PDF
    AbstractUnderstanding SARS-CoV-2 transmission in higher education settings is important to limit spread between students, and into at-risk populations. In this study, we sequenced 482 SARS-CoV-2 isolates from the University of Cambridge from 5 October to 6 December 2020. We perform a detailed phylogenetic comparison with 972 isolates from the surrounding community, complemented with epidemiological and contact tracing data, to determine transmission dynamics. We observe limited viral introductions into the university; the majority of student cases were linked to a single genetic cluster, likely following social gatherings at a venue outside the university. We identify considerable onward transmission associated with student accommodation and courses; this was effectively contained using local infection control measures and following a national lockdown. Transmission clusters were largely segregated within the university or the community. Our study highlights key determinants of SARS-CoV-2 transmission and effective interventions in a higher education setting that will inform public health policy during pandemics.</jats:p

    Molal volume of multicomponent liquid mixtures of non electrolytes

    No full text
    149-151Inspite of tremendous impressive developments of the molecular theory, an engineer frequently finds the need for physical properties, which have not been measured. The molal volume of a fluid at a given pressure and temperature is an equilibrium thermodynamic property. In the present work,<span style="font-size:14.0pt; line-height:115%;font-family:" times="" new="" roman";mso-fareast-font-family:hiddenhorzocr;="" color:black;mso-ansi-language:en-in;mso-fareast-language:en-in;mso-bidi-language:="" hi"="" lang="EN-IN"> <span style="font-size:14.0pt;line-height:115%; font-family:" times="" new="" roman";mso-fareast-font-family:"times="" roman";="" color:black;mso-ansi-language:en-in;mso-fareast-language:en-in;mso-bidi-language:="" hi"="" lang="EN-IN">Wassiljewa equation in conjunction with Hildebrand's relation has been applied to evaluate molal volume of the various classes of liquid mixtures (binary, ternary and quaternary). It has the advantage over the empirical relations since it can be applied to a wide variety of fluids in moderate range. Moreover, it is very simple in form and the parameters have physical significance that is easy to conceive. It was observed after extensive fitting to the Hildebrand relation that V0 for most pure fluid range between 0.3 and 0.32 times the critical volume. </span

    Estimation of Crop-coefficients and Evapotranspiration of Field Pea (Pisum sativum L.) Using Lysimeter and Empirical Models under Temperate Climate

    No full text
    During Rabi 2020-21, a field experiment was conducted at SKUAST-K, Shalimar, India, focusing on field Pea (Pisum sativum L.). The aim of this study was to determine the water requirement and single crop coefficient (Kc) of pea using a lysimeter setup. Four empirical models were employed to calculate the reference evapotranspiration and were then compared with the actual crop evapotranspiration at different growth stages. The Kc values for field pea were 0.50, 0.80, 1.15, and 1.10 during the initial, development, mid-season and late season stages, respectively. The water requirement was found as 239.9 mm for the whole cropping period of the pea. Among the models, the Penman Montieth crop evapotranspiration model exhibited the closest agreement with the corresponding values obtained in the field through water balance study, yielding RMSE, RSR, and NSE values of 0.97, 9.5, and 11.6, respectively. These findings highlight the significance of using Penman Monteith crop evapotranspiration model for estimating crop evapotranspiration in temperate regions
    corecore