65 research outputs found
Oxidized Single-Walled Carbon Nanotubes (SWCNs-COOH) as a New Catalyst for the Protection of Carbonyl Groups as Hydrazones
Nano-materials are considered as suitable heterogeneous catalysts for many organic reactions. Herein oxidized carbon nanotube (SWCNTs-COOH) has been reported as a heterogeneous catalyst, for protection of carbonyl groups as hydrazones in EtOH at 80 °C. The reactions proceed smoothly with good to excellent yields, and the SWCNTs-COOH used can be recycled.KEYWORDS Carbon nanotubes, protection, catalyst, carbonyl group
Comparing the effects of vaginal misoprostol, laminaria, and extra amniotic saline infusion on cervical ripening and induction of labor
Objective This study aimed to compare the effects of vaginal misoprostol, laminaria, and extra-amniotic saline infusion (EASI) on cervical ripening. Methods This randomized controlled trial was conducted on 195 women with singleton pregnancies and unripe cervices. Participants were randomly allocated to 3, 65-person groups: a misoprostol, a laminaria, and an EASI group. The interventions in the misoprostol, laminaria, and EASI groups included a single 25-μg vaginal misoprostol suppository, an intracervical laminaria, and a transcervical Foley catheter, respectively. The groups were compared with each other regarding time intervals from labor induction to labor active phase and delivery, cervical dilation, Bishop scores 6 hours after induction, delivery type, length of hospital stay, and complications. Results There were no significant differences among the groups regarding maternal ages, gestational ages, body mass indices, baseline cervical dilations, and Bishop scores (P>0.05). Six hours after induction, the Bishop score and cervical dilation were significantly greater in the EASI group than in the other 2 groups (P<0.001). Moreover, time intervals from labor induction to labor active phase and delivery in the EASI group were significantly short (P<0.001). The rates of cesarean section, fetal distress, placental abruption, and meconium staining in the misoprostol group were significantly high (P<0.05), and the length of hospital stay in the EASI group was significantly short (P<0.001). Conclusion EASI is a safer and more effective method for cervical ripening. Considering its inexpensiveness, easy accessibility, and greater effectiveness, EASI is recommended for cervical ripening. Trial Registration Iranian Center for Clinical Trials Identifier: IRCT20170513033941N39. © 2020 Korean Society of Obstetrics and Gynecology
High-salinity growth conditions promote tat-independent secretion of tat substrates in Bacillus subtilis
The Gram-positive bacterium Bacillus subtilis contains two Tat translocases, which can facilitate transport of folded proteins across the plasma membrane. Previous research has shown that Tat-dependent protein secretion in B. subtilis is a highly selective process and that heterologous proteins, such as the green fluorescent protein (GFP), are poor Tat substrates in this organism. Nevertheless, when expressed in Escherichia coli, both B. subtilis Tat translocases facilitated exclusively Tat-dependent export of folded GFP when the twin-arginine (RR) signal peptides of the E. coli AmiA, DmsA, or MdoD proteins were attached. Therefore, the present studies were aimed at determining whether the same RR signal peptide-GFP precursors would also be exported Tat dependently in B. subtilis. In addition, we investigated the secretion of GFP fused to the full-length YwbN protein, a strict Tat substrate in B. subtilis. Several investigated GFP fusion proteins were indeed secreted in B. subtilis, but this secretion was shown to be completely Tat independent. At high-salinity growth conditions, the Tat-independent secretion of GFP as directed by the RR signal peptides from the E. coli AmiA, DmsA, or MdoD proteins was significantly enhanced, and this effect was strongest in strains lacking the TatAy-TatCy translocase. This implies that high environmental salinity has a negative influence on the avoidance of Tat-independent secretion of AmiA-GFP, DmsA-GFP, and MdoD-GFP. We conclude that as-yet-unidentified control mechanisms reject the investigated GFP fusion proteins for translocation by the B. subtilis Tat machinery and, at the same time, set limits to their Tat-independent secretion, presumably via the Sec pathway
Genetic Evidence for a Tight Cooperation of TatB and TatC during Productive Recognition of Twin-Arginine (Tat) Signal Peptides in Escherichia coli
The twin arginine translocation (Tat) pathway transports folded proteins across the cytoplasmic membrane of bacteria. Tat signal peptides contain a consensus motif (S/T-R-R-X-F-L-K) that is thought to play a crucial role in substrate recognition by the Tat translocase. Replacement of the phenylalanine at the +2 consensus position in the signal peptide of a Tat-specific reporter protein (TorA-MalE) by aspartate blocked export of the corresponding TorA(D+2)-MalE precursor, indicating that this mutation prevents a productive binding of the TorA(D+2) signal peptide to the Tat translocase. Mutations were identified in the extreme amino-terminal regions of TatB and TatC that synergistically suppressed the export defect of TorA(D+2)-MalE when present in pairwise or triple combinations. The observed synergistic suppression activities were even more pronounced in the restoration of membrane translocation of another export-defective precursor, TorA(KQ)-MalE, in which the conserved twin arginine residues had been replaced by lysine-glutamine. Collectively, these findings indicate that the extreme amino-terminal regions of TatB and TatC cooperate tightly during recognition and productive binding of Tat-dependent precursor proteins and, furthermore, that TatB and TatC are both involved in the formation of a specific signal peptide binding site that reaches out as far as the end of the TatB transmembrane segment
Environmental Salinity Determines the Specificity and Need for Tat-Dependent Secretion of the YwbN Protein in Bacillus subtilis
Twin-arginine protein translocation (Tat) pathways are required for transport of folded proteins across bacterial, archaeal and chloroplast membranes. Recent studies indicate that Tat has evolved into a mainstream pathway for protein secretion in certain halophilic archaea, which thrive in highly saline environments. Here, we investigated the effects of environmental salinity on Tat-dependent protein secretion by the Gram-positive soil bacterium Bacillus subtilis, which encounters widely differing salt concentrations in its natural habitats. The results show that environmental salinity determines the specificity and need for Tat-dependent secretion of the Dyp-type peroxidase YwbN in B. subtilis. Under high salinity growth conditions, at least three Tat translocase subunits, namely TatAd, TatAy and TatCy, are involved in the secretion of YwbN. Yet, a significant level of Tat-independent YwbN secretion is also observed under these conditions. When B. subtilis is grown in medium with 1% NaCl or without NaCl, the secretion of YwbN depends strictly on the previously described “minimal Tat translocase” consisting of the TatAy and TatCy subunits. Notably, in medium without NaCl, both tatAyCy and ywbN mutants display significantly reduced exponential growth rates and severe cell lysis. This is due to a critical role of secreted YwbN in the acquisition of iron under these conditions. Taken together, our findings show that environmental conditions, such as salinity, can determine the specificity and need for the secretion of a bacterial Tat substrate
Visualizing Interactions along the Escherichia coli Twin-Arginine Translocation Pathway Using Protein Fragment Complementation
The twin-arginine translocation (Tat) pathway is well known for its ability to export fully folded substrate proteins out of the cytoplasm of Gram-negative and Gram-positive bacteria. Studies of this mechanism in Escherichia coli have identified numerous transient protein-protein interactions that guide export-competent proteins through the Tat pathway. To visualize these interactions, we have adapted bimolecular fluorescence complementation (BiFC) to detect protein-protein interactions along the Tat pathway of living cells. Fragments of the yellow fluorescent protein (YFP) were fused to soluble and transmembrane factors that participate in the translocation process including Tat substrates, Tat-specific proofreading chaperones and the integral membrane proteins TatABC that form the translocase. Fluorescence analysis of these YFP chimeras revealed a wide range of interactions such as the one between the Tat substrate dimethyl sulfoxide reductase (DmsA) and its dedicated proofreading chaperone DmsD. In addition, BiFC analysis illuminated homo- and hetero-oligomeric complexes of the TatA, TatB and TatC integral membrane proteins that were consistent with the current model of translocase assembly. In the case of TatBC assemblies, we provide the first evidence that these complexes are co-localized at the cell poles. Finally, we used this BiFC approach to capture interactions between the putative Tat receptor complex formed by TatBC and the DmsA substrate or its dedicated chaperone DmsD. Our results demonstrate that BiFC is a powerful approach for studying cytoplasmic and inner membrane interactions underlying bacterial secretory pathways
Transport of Folded Proteins by the Tat System
The twin-arginine protein translocation (Tat) system has been characterized in bacteria, archaea and the chloroplast thylakoidal membrane. This system is distinct from other protein transport systems with respect to two key features. Firstly, it accepts cargo proteins with an N-terminal signal peptide that carries the canonical twin-arginine motif, which is essential for transport. Second, the Tat system only accepts and translocates fully folded cargo proteins across the respective membrane. Here, we review the core essential features of folded protein transport via the bacterial Tat system, using the three-component TatABC system of Escherichia coli and the two-component TatAC systems of Bacillus subtilis as the main examples. In particular, we address features of twin-arginine signal peptides, the essential Tat components and how they assemble into different complexes, mechanistic features and energetics of Tat-dependent protein translocation, cytoplasmic chaperoning of Tat cargo proteins, and the remarkable proofreading capabilities of the Tat system. In doing so, we present the current state of our understanding of Tat-dependent protein translocation across biological membranes, which may serve as a lead for future investigations
Effect of Pouring Time and Storage Temperature on Dimensional Stability of Casts Made from Irreversible Hydrocolloid
Objective: The aim of this study was to evaluate the dimensional stability of casts made from an alginate impression material poured immediately and stored after specific periods.Materials and Methods: The common alginate used in Iran (Super; Iralgin, Golchai Co.,Tehran, Iran) was tested. A master model was mounted on a special device and used to obtain the impressions. These impressions were stored at 23°C (SD=1) and 4°C (SD=1) in100% relative humidity, then poured with gypsum immediately and again after 12, 25, 45 and 60 minutes. The casts were measured with a traveling microscope with the precision of 0.5 micrometer.Results: The dimensional stability of the alginate and impressions were both significantly time and temperature dependent. The impressions were dimensionally stable significantly until 12 minutes of storage at room temperature and until 45 minutes of storage at 4°C(SD=1).Conclusion: The dimensional stability of the alginate impressions was influenced by the storage time and environment temperature, but a humid environment and 4°C (SD=1)temperature may delay the pouring
- …