550 research outputs found

    Biaxial Strain in the Hexagonal Plane of MnAs Thin Films: The Key to Stabilize Ferromagnetism to Higher Temperature

    Get PDF
    The alpha-beta magneto-structural phase transition in MnAs/GaAs(111) epilayers is investigated by elastic neutron scattering. The in-plane parameter of MnAs remains almost constant with temperature from 100 K to 420 K, following the thermal evolution of the GaAs substrate. This induces a temperature dependent biaxial strain that is responsible for an alpha-beta phase coexistence and, more important, for the stabilization of the ferromagnetic alpha-phase at higher temperature than in bulk. We explain the premature appearance of the beta-phase at 275 K and the persistence of the ferromagnetic alpha-phase up to 350 K with thermodynamical arguments based on the MnAs phase diagram. It results that the biaxial strain in the hexagonal plane is the key parameter to extend the ferromagnetic phase well over room temperature.Comment: 4 pages, 3 figures, accepted for publication in Physical Review Letter

    Biaxial Strain in the Hexagonal Plane of MnAs Thin Films: The Key to Stabilize Ferromagnetism to Higher Temperature

    Full text link
    The alpha-beta magneto-structural phase transition in MnAs/GaAs(111) epilayers is investigated by elastic neutron scattering. The in-plane parameter of MnAs remains almost constant with temperature from 100 K to 420 K, following the thermal evolution of the GaAs substrate. This induces a temperature dependent biaxial strain that is responsible for an alpha-beta phase coexistence and, more important, for the stabilization of the ferromagnetic alpha-phase at higher temperature than in bulk. We explain the premature appearance of the beta-phase at 275 K and the persistence of the ferromagnetic alpha-phase up to 350 K with thermodynamical arguments based on the MnAs phase diagram. It results that the biaxial strain in the hexagonal plane is the key parameter to extend the ferromagnetic phase well over room temperature.Comment: 4 pages, 3 figures, accepted for publication in Physical Review Letter

    Local magnetic moment coupling of Gd on Fe(100) studied by magnetic dichroism in angular-dependent photoemission

    Get PDF
    We measured the magnetic linear dichroism in the angular distribution (MLDAD) of photoemission of thin Gd layers on Fe(100). At low photon energies large MLDAD asymmetries, up to 40%, in the (Formula presented) photoemission were observed. The line shape and the photon-energy dependence of the measured MLDAD are in good agreement with theoretical results. Analysis of the (Formula presented) and (Formula presented) magnetic signals indicates an antiferromagnetic coupling between Gd and Fe, confirming previous findings. We also demonstrate that the MLDAD plus-minus feature is governed by the orbital magnetic moment of the core hole state

    Proximity-induced ferromagnetism and chemical reactivity in few-layer VSe2 heterostructures

    Get PDF
    Among transition-metal dichalcogenides, mono and few-layers thick VSe2 has gained much recent attention following claims of intrinsic room-temperature ferromagnetism in this system, which have nonetheless proved controversial. Here, we address the magnetic and chemical properties of Fe/VSe2 heterostructure by combining element sensitive x-ray absorption spectroscopy and photoemission spectroscopy. Our x-ray magnetic circular dichroism results confirm recent findings that both native mono/few-layer and bulk VSe2 do not show intrinsic ferromagnetic ordering. Nonetheless, we find that ferromagnetism can be induced, even at room temperature, after coupling with a Fe thin film layer, with antiparallel alignment of the moment on the V with respect to Fe. We further consider the chemical reactivity at the Fe/VSe2 interface and its relation with interfacial magnetic coupling

    Interface bonding of a ferromagnetic/semiconductor junction : a photoemission study of Fe/ZnSe(001)

    Full text link
    We have probed the interface of a ferromagnetic/semiconductor (FM/SC) heterojunction by a combined high resolution photoemission spectroscopy and x-ray photoelectron diffraction study. Fe/ZnSe(001) is considered as an example of a very low reactivity interface system and it expected to constitute large Tunnel Magnetoresistance devices. We focus on the interface atomic environment, on the microscopic processes of the interface formation and on the iron valence-band. We show that the Fe contact with ZnSe induces a chemical conversion of the ZnSe outermost atomic layers. The main driving force that induces this rearrangement is the requirement for a stable Fe-Se bonding at the interface and a Se monolayer that floats at the Fe growth front. The released Zn atoms are incorporated in substitution in the Fe lattice position. This formation process is independent of the ZnSe surface termination (Zn or Se). The Fe valence-band evolution indicates that the d-states at the Fermi level show up even at submonolayer Fe coverage but that the Fe bulk character is only recovered above 10 monolayers. Indeed, the Fe 1-band states, theoretically predicted to dominate the tunneling conductance of Fe/ZnSe/Fe junctions, are strongly modified at the FM/SC interface.Comment: 23 pages, 5 figures, submitted to Physical review

    Prominent 5d-orbital contribution to the conduction electrons in gold

    Full text link
    We have examined the valence-band electronic structures of gold and silver in the same column in the periodic table with nominally filled d orbitals by means of a recently developed polarization-dependent hard x-ray photoemission. Contrary to a common expectation, it is found that the 5d-orbital electrons contribute prominently to the conduction electrons in gold while the conduction electrons in silver are to some extent free-electron-like with negligible 4d contribution, which could be related to a well-known fact that gold is more stable than silver in air. The 4d electron correlation effects are found to be essential for the conduction electron character in silver.Comment: 8 pages, 4 figures, to be appeared in New J. Phys

    Depth dependence of itinerant character in Mn-substituted Sr3Ru2O7

    Full text link
    We present a core-level photoemission study of Sr3(Ru 1-xMnx)2O7, in which we monitor the evolution of the Ru-3d fine structure versus Mn substitution and probing depth. In both Ru 3d3/2 and 3d5/2 core levels we observe a clear suppression of the metallic features, i.e. the screened peaks, implying a sharp transition from itinerant to localized character already at low Mn concentrations. The comparison between soft and hard x-ray photoemission, which provides tunable depth sensitivity, reveals that the degree of localized/metallic character for Ru is different at the surface than in the bulk.Comment: 10 pages, 4 figures, 1 tabl

    Electronic Structure of CeFeAsO1-xFx (x=0, 0.11/x=0.12) compounds

    Full text link
    We report an extensive study on the intrinsic bulk electronic structure of the high-temperature superconductor CeFeAsO0.89F0.11 and its parent compound CeFeAsO by soft and hard x-ray photoemission, x-ray absorption and soft-x-ray emission spectroscopies. The complementary surface/bulk probing depth, and the elemental and chemical sensitivity of these techniques allows resolving the intrinsic electronic structure of each element and correlating it with the local structure, which has been probed by extended-x-ray absorption fine structure spectroscopy. The measurements indicate a predominant 4f1 (i.e. Ce3+) initial state configuration for Cerium and an effective valence-band-to-4f charge-transfer screening of the core hole. The spectra also reveal the presence of a small Ce f0 initial state configuration, which we assign to the occurrence of an intermediate valence state. The data reveal a reasonably good agreement with the partial density of states as obtained in standard density functional calculations over a large energy range. Implications for the electronic structure of these materials are discussed.Comment: Accepted for publication in Phys. Rev.

    Analysis of Metal-Insulator Crossover in Strained {SrRuO}3 Thin Films by X-ray Photoelectron Spectroscopy

    Get PDF
    The electronic properties of ultrathin epitaxial films of strontium ruthenate SrRuO3 perovskite oxide are modified by epitaxial strain, as determined by growing by pulsed laser deposition, on different the substrates. Electron transport measurements indicated that tensile strain deformation of the SrRuO3 unit cell reduces the metallicity of the material and reduces the metal-insulator-transition (MIT) temperatures. The shrinkage of the Ru-O-Ru buckling angle due to compressive strain is counterweighted by the increased overlap of the conduction Ru-4d orbitals with the O-2p ones due to the smaller interatomic distances resulting into an increased MIT temperature, i.e. a more conducting material. In the more metallic samples the core level x-ray photoemission spectroscopy lineshapes show the occurrence of an extra-peak at the lower binding energies of the main Ru-3d peaks that is attributed to screening, as observed in volume sensitive photoemission of the unstrained material

    High energy, high resolution photoelectron spectroscopy of Co2Mn(1-x)Fe(x)Si

    Full text link
    This work reports on high resolution photoelectron spectroscopy for the valence band of Co2Mn(1-x)Fe(x)Si (x=0,0.5,1) excited by photons of about 8 keV energy. The measurements show a good agreement to calculations of the electronic structure using the LDA+U scheme. It is shown that the high energy spectra reveal the bulk electronic structure better compared to low energy XPS spectra. The high resolution measurements of the valence band close to the Fermi energy indicate the existence of the gap in the minority states for all three alloys.Comment: 14 pages, 5 figures, submitted to J. Phys. D: Appl. Phy
    corecore