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Abstract: The electronic properties of strontium ruthenate SrRuO3 perovskite oxide thin films
are modified by epitaxial strain, as determined by growing on different substrates by pulsed
laser deposition. Temperature dependence of the transport properties indicates that tensile
strain deformation of the SrRuO3 unit cell reduces the metallicity of the material as well as its
metal-insulator-transition (MIT) temperature. On the contrary, the shrinkage of the Ru–O–Ru
buckling angle due to compressive strain is counterweighted by the increased overlap of the
conduction Ru-4d orbitals with the O-2p ones due to the smaller interatomic distances resulting into
an increased MIT temperature, i.e., a more conducting material. In particular, in the more metallic
samples, the core level X-ray photoemission spectroscopy lineshapes show the occurrence of an
extra-peak at the lower binding energies of the main Ru-3d peak that is attributed to screening,
as observed in volume sensitive photoemission of the unstrained material.

Keywords: metal-insulator-transition; perovskite oxides; laser deposition; stress-strain relations;
angular resolved photoemission spectroscopy; X-ray photoemission spectroscopy

1. Introduction

Electron hybridization in solids in competition with Coulomb interactions plays a fundamental
role in the quantum properties of these transition metal oxide materials [1–7]. In the context of
spintronics, magnetic and electronic reconstructions at the interface have been often reported, with their
origin lying in the delicate interplay between the charge, spin and orbital degrees of freedom.
Looking at the strength of electron hybridization and localization, near a surface or interface the
reduced translational symmetry modifies the electronic properties with important consequences on
the magnetic order parameter, the transition temperature and the metallic vs. insulating behaviour,
thus hindering the achievement of the desired performance of interface-based devices.

Strontium ruthenate SrRuO3 (SRO) is an itinerant ferromagnet and a prototypical spintronics
system [8,9]. Because of the structural and chemical similarities of all oxide perovskites, the growth of
very high-quality epitaxial SRO-based heterostructures is indeed possible, thus allowing to explore
new perspectives in the field of electronic, magnetic and optical devices [10–12]. Yet, interest in SRO
goes well beyond its use as a functional layer embedded in oxide heterostructures. As a matter of
fact, several works have provided evidence of a strong correlation between transport, magnetic and
structural properties of SRO making it a very interesting model material for the study of itinerant
magnetism in oxide systems [8,13–18]. However, as in many other oxide materials, surface- (or more
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in general interfacial-) and defect states play critical roles in mediating ferromagnetism, due to the
modified chemistry of the first top—or interfacial—layers.

Here we report on the influence of the epitaxial strain on the electronic properties of SRO thin
films at the surface. Epitaxial thin films were grown on different substrates by pulsed laser deposition
(PLD) technique, characterized by crystallography and their properties were probed by electron
spectroscopy. As expected, the metal-insulator-temperature TMI turns out to be modulated by the
in-plane biaxial strain (it increases in compressively strained films, while it decreases in tensile strained
ones). Core level soft X-ray photoemission spectroscopy with tuneable synchrotron radiation reveals
the occurrence of an extra peak at Ru-3d, which is the signature of bulk-like hybridization and
metallicity, only in the most metallic SRO films. In particular, only compressively strained SRO thin
films display bulk-like electronic properties also in proximity of the surface (i.e., within 1 nm) as
opposite to SRO films under tensile strain. This evidence that the surface/interface electronic charge
distribution can be effectively controlled via atomic-precision growth techniques, is of importance for
possible applications in the field of integrated spintronics.

2. Materials and Methods

PLD growth of epitaxial SRO thin films was performed using a KrF excimer pulsed laser source,
with a typical energy density per laser shot of about 3 J/cm2 and a laser repetition rate of 3 Hz
ablating from a SRO stoichiometric target (purity at 99.99%). The films growth was performed in
an ultra-pure oxygen background atmosphere (purity at 99.9999%). All of the investigated samples
were grown at 0.1 mbar with a substrate temperature at 500 ◦C. After the film growth, the samples
were cooled down to room temperature in about 15 min in oxygen at the same deposition pressure.
Structural characterization was carried out using a four-circle Panalytical X’pert diffractometer with
a Cu Kα radiation source. Surface morphology of the SRO samples was investigated by a Supra 40
field-emission gun (FEG) scanning electron microscope (SEM) equipped with a Gemini column and an
In-lens detector yielding increased signal to noise ratio. EDS experiments were carried out by Oxford
LN2-free X-Act Silicon Drift Detector and chemical composition were calculated by Aztec software.
Soft X-ray radiation spectroscopy (XPS and ARPES) and LEED experiments were carried out at the
APE-IOM beamlines at Elettra. The measurements were recorded on the samples that were transferred
in situ directly after growth under UHV conditions (base pressure < 2 × 10−10 mbar) to the APE
spectrometer end stations. XPS spectra were taken with a photon energy of 900 eV with an Omicron
E125 hemispherical analyzer. The ARPES data were acquired with linearly polarized synchrotron
radiation and a Scienta DA-30 hemispherical analyser.

3. Structural Properties

SRO possesses an orthorhombic crystal structure with lattice constants a = 0.556 nm, b = 0.553 nm
and c = 0.784 nm. Yet, it shows a perovskite-like sub-unit cell with lattice constants a = b = c = 0.393 nm
for bulk material [19,20]. For the sake of simplicity in this paper, the Miller indices of SRO will be
referred to the perovskite cell. In order to induce different in-plane biaxial strain, SRO thin films were
grown on (110) NdGaO3 (NGO), (001) SrTiO3 (STO) and (110) GdScO3 (GSO) single crystal substrates.
Considering the SRO bulk lattice parameter of 0.393 nm, SRO films are expected to grow strained under
compressive (i.e., −1.8% and −0.6% on NGO and STO, respectively) or tensile (i.e., +0.9% on GSO)
conditions. Deposition of SRO thin films was optimized at 0.1 mbar of ultra-pure oxygen pressure
without any post-annealing process of the samples. Since the high-pressure background condition
during the growth (i.e., 0.1 mbar) could possibly affect the stoichiometric ratio of the heavy-ion
elements [21–23], energy dispersive spectroscopy (EDS) analysis was performed. Because of the
overlap between the characteristic peaks of SRO film with some elements present in the substrates,
a reliable stoichiometric analysis was obtained by performing the EDS analysis on SRO films grown on
NGO substrates (Figure 1).
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Figure 1. EDS spectrum of SRO film grown on NGO substrate.

EDS experiments confirm that SRO films grown at 0.1 mbar, with a target-to-substrate of 5 cm and
by using high energy laser pulses of 300 mJ show the optimal heavy-ion stoichiometric ratio (namely,
Sr:Ru = 1:1—with an experimental error of about 5%). X-ray diffraction (XRD) characterization
was routinely performed for all of the samples. The θ–2θ scans in symmetrical Bragg-Brentano
configuration for optimized SRO films only contain (00l) peaks, indicating the preferential c-axis
orientation of the films (in left a) of Figure 2 data refers to a SRO sample grown on NGO substrate).
As expected, the out-of-plane lattice parameters evolve as a consequence of the substrate-induced
strain mechanism (data are reported in panel b) of Figure 2).
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Figure 2. (a) symmetrical θ–2θ scan of a SRO film grown on a (110)-oriented NGO substrate;
(b) out-of-plane vs in-plane lattice parameters for the investigated SRO samples; the expected
out-of-plane lattice deformation due to the elastic response of the lattice parameters as a function of a
biaxial strain obtained by the Equation (1) is enlightened by the yellow area.

An in-plane compressive (tensile) strain induces the elongation (contraction) of the out-of-plane
lattice parameters. In particular, the elastic response of the lattice parameters as a function of a biaxial
strain can be obtained by the formula

∆c
c

= − 2ν

1 − ν
· ∆a

a
(1)

where ν is the Poisson ratio which can range between 0 and 0.5 (typical values found in oxides is
0.33). All of the measured structural deformations are compatible with elastic strain mechanism only
(Figure 2b). The film thickness and surface roughness were probed by low-angle X-ray reflectivity
(XRR). Representative XRR measurement of a SRO sample is shown in the Figure 3a.
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b)

Figure 3. (a) low-angle X-ray reflectivity of a SRO film grown on a (110)-oriented NGO (blue circles
along with the simulated curve (red); (b) LEED patterns of a SRO film grown on a (110)-oriented NGO
taken with electron energy of 80 eV.

Simulations of the low-angle XRR data were performed by mean of the IMD 4 package of XOP 2.3
software [24,25]. The fitted curves (red curves included in Figure 3a) nicely match the expected value
of 15 nm. XRR oscillations are recorded up to 2θ values of 5o, while, above this angle, the oscillations
fall below the experimental sensitivity of our X-ray diffractometer [26,27]. Surface long range order
was probed by in situ low-energy electron diffraction (LEED). Figure 3b reports the LEED pattern of
a SRO film grown on STO substrate, measured by electrons with 80 eV kinetic energy, which shows
sharp diffraction spots arranged in an in-plane squared coordination of the pseudocubic SRO structure.

4. Transport Properties

Electrical transport measurements were carried out by standard four-probe dc technique, with a
bias pulsed and reversed current. Here we report the resistivity versus temperature behaviour of SRO
films grown on NGO (−1.8% compressive strained), STO (−0.6% compressive strained) and GSO
(+0.9% tensile strained) substrates (Figure 4a).
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Figure 4. (a) Resistivity versus temperature curves for SRO films grown on NGO (blue triangles), STO
(red circles) and GSO (green triangles); (b) Derivative of resistivity as a function of temperature for the
three reported samples (i.e., color code is the same).

Among these, SRO film deposited on GSO substrates shows the highest resistivity values and a
very small residual resistivity ratio (RRR) value (slightly larger than 1), indicating a higher degree of
structural disorder in the film [28–30]. The negative slope of the resistivity curve in the low temperature
range (T < 50 K) is consistent with the presence of impurities that act as scattering centres determining
the insulating character of SRO film on GSO at low temperatures [31]. Conversely, SRO film grown on
NGO substrate is the most metallic one, across the whole temperature range, with room temperature
resistivity of about 600 µΩ·cm, which is very close to those reported for SRO thin films [32] while
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thicker films are characterized by lower (i.e., factor of 2) values [13,14,33]. Moreover, the RRR of
SRO film grown on NGO is a few percent smaller than the STO sample, which can indicate that the
STO substrate (i.e., low strain imposed) might favorite better structural properties (i.e., less defects).
The paramagnetic to ferromagnetic transition in SRO is associated to a change in the resistivity curve,
namely from a linear-T to a parabolic-T2 behaviour at high and low temperatures, respectively [8,34].
In this respect, the analysis of the derivative ∆ρ/∆T provides the evaluation of the TMI temperature by
the onset of its increase at low temperatures (see arrows in Figure 4b). The TMI temperature is severely
reduced in the case of the film grown on GSO (91 K) film with respect to the SRO samples grown on
STO (i.e., 106 K) and NGO (i.e., 127 K).

5. ARPES Experiments

Photoemission investigation was performed with polarized synchrotron radiation on SRO films
transferred in situ (base pressure during the transfer never exceeds 2 × 10−10 mbar) directly after
the growth, to the two end-stations of the APE beamline [35]. Such a strategy allowed us to perform
spectroscopic experiments on pristine uncontaminated samples [36–38]. In particular, the most metallic
SRO film (i.e., the one grown on NGO substrate) was investigated by means of ARPES. Measurements
were performed at room temperature. Figure 5 shows the ARPES energy dispersion map obtained
with linearly polarized light of hν = 70 eV. Two arcs dispersing near ±0.5 confirm.

Figure 5. ARPES energy dispersion map of SrRuO3 measured with 70 eV photon energy at room
temperature. (a) Valence band dispersion and angle-integrated DOS showing spectral intensity at the
Fermi level (white profile superimposed to ARPES spectrum). (b) Zoom to the area close to the Fermi
level indicating the states responsible for the metallic nature of the film.

The integrated density of state (DOS) is superimposed to ARPES map of Figure 5 (white solid
line). In particular, the spectral weight close to the Fermi level is ascribed to the Ru-4d t2g orbital,
while the valence band (VB) is mainly associated to O-2p orbitals [39]. The overall DOS shape is
consistent with those reported in the literature, showing the VB bandwidth spans between 8 and
1.8 eV binding energy [39,40]. Some discrepancies in the ARPES data are ascribable to the different
experimental conditions. In particular, a tiny electron pocket centred at kx = 0 is missing in our spectra,
while it is reported in refs [40,41] but not in ref [42]. However, at difference to our case, the data in
other reports were mainly acquired using unpolarized He–I radiation (21.2 eV) at T < 15 K [40–42].
The observed discrepancies are therefore consistent either with a different Brillouin zone sampling due
to the excitation energy either to matrix element effects induced by light polarization or experimental
geometry. The overall good consistency between our data and those reported in literature [40–43] is
indicative of optimal stoichiometry bulk-like electronic properties of SRO samples grown on NGO.
In particular, due to the high surface sensitivity intrinsic to ARPES technique, such properties are
maintained up to the very surface of the films (i.e., 3–4 Å).
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6. Core Level Photoemission Spectroscopy Experiments

Soft X-ray photoemission spectroscopy (XPS) spectra were measured at room temperature with
linearly polarized synchrotron radiation on SRO samples transferred in situ directly after growth.
The near surface properties of the SRO thin films were quantitatively explored by measuring the relative
intensities of core-level photoemission spectra as well as the valence density of states (Figure 6) [44–48].

The XPS survey scan displays the main peaks of both Sr and Ru with no trace of material
segregation. Moreover, the XPS spectra of the valence band show differences in the density of states
in the Fermi level region that reflect the transport results discussed above. The connection between
strain and metallic character can be also seen from the changes at the Fermi level: the density of
states becomes larger for the compressively strained samples (i.e., NGO and STO) compared with
the tensile strained one (GSO) thus confirming that SRO grown with the most compressive strain
possesses has a clear metallic character up to the surface. XPS of the Ru-3d, Sr-3p and O1s peaks
were investigated in the most metallic sample. Even though Sr-3p1/2 peak partially overlap Ru-3d3/2,
a doublet structure can be clearly seen at Ru-3d. These peaks were attributed to well-screened (lower
binding energy peak) and poorly screened (unscreened—higher binding energy peak) components
arising in the photoemission process [44,49–51]. Consistently, O-1s peak also shows a double-peaks
structure, with the satellite peak attributed to an electron screening mechanism [52]. In order to
correlate the presence of the Ru-3d extra-peak with the metallicity of the system, lineshapes of Ru-3d
and Sr-3p peaks were analyzed in all SRO samples (Figure 7).
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Figure 6. (a) XPS survey scan of a SRO film grown on NGO substrate (excitation photon energy was
hν = 850 eV); (b) high-resolution XPS scans of O-1s (b-1) and Ru-3d/Sr-3p (b-2) core levels, along
with the valence band (b-3); In particular, valence band scans are reported for all of investigated SRO
samples (i.e., namely grown on NGO (blue), STO (red) and GSO (green), respectively; in the inset,
a zooming out of the Fermi’s edge).
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a) b) c)

Figure 7. High-resolution XPS scans of Ru-3d/Sr-3p peaks for SRO films grown on NGO (a), STO (b)
and GSO (c); photon energy was hν = 850 eV. Results of fitting procedures are also reported (area of
well-screened peak in enlighten by red filling color).

The best fit was obtained allowing for two energy shifted components for Ruthenium, consistently
with the reference papers [44,45,51]. The intensity ratios between the two components of each spin-orbit
doublet are 4/3 for Ru-3d and 1/2 for Sr-3p. By comparing the Ru-3d spectra with those reported
for nearly perfectly stoichiometric SRO [44–46]. Moreover, in tensile-strained SRO sample with
low metallicity (i.e., SRO on GSO), the well-screened peak is suppressed while it is well-defined in
compressive-strained highly metallic ones (i.e., SRO grown on NGO and STO).

7. Conclusions

The ensemble of photoelectron spectroscopy results shows how both the buckling of the bond
angle and the changes in the bond length must both be considered to explain the electronic transport
properties. The width of the conduction band strongly depends on the superimposition of the oxygen
O-2pσ and O-2pπ orbitals and Ru-4d orbitals. On one hand, tensile strain—occurring in SRO samples
grown on GSO—tends to make the structure near-cubic (i.e., the Ru-O-Ru buckling angle decreases)
thus better aligning Ru-4d and O-2p orbitals. On the other hand, the increased inter-atomic distance
makes such a superimposition smaller thus resulting in a less conductive sample, as shown from the
increase in resistivity. Differently, compressive strain—occurring in SRO samples grown on NGO and
STO—increases the conductivity albeit it shrinks the Ru-O-Ru angle, meaning that the overlap of the
conduction orbitals is increased by the smaller interatomic distance in spite of their axes becoming
more misaligned. The very presence of the Ru-3d well-screened peak in the soft X-ray photoemission
spectra demonstrates that compressively strained SRO thin films display bulk like electronic properties
also in proximity of the surface.
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