19,345 research outputs found

    Tuning electronic structure of graphene via tailoring structure: theoretical study

    Full text link
    Electronic structures of graphene sheet with different defective patterns are investigated, based on the first principles calculations. We find that defective patterns can tune the electronic structures of the graphene significantly. Triangle patterns give rise to strongly localized states near the Fermi level, and hexagonal patterns open up band gaps in the systems. In addition, rectangular patterns, which feature networks of graphene nanoribbons with either zigzag or armchair edges, exhibit semiconducting behaviors, where the band gap has an evident dependence on the width of the nanoribbons. For the networks of the graphene nanoribbons, some special channels for electronic transport are predicted.Comment: 5 figures, 6 page

    An exact solution of spherical mean-field plus orbit-dependent non-separable pairing model with two non-degenerate j-orbits

    Get PDF
    An exact solution of nuclear spherical mean-field plus orbit-dependent non-separable pairing model with two non-degenerate j-orbits is presented. The extended one-variable Heine-Stieltjes polynomials associated to the Bethe ansatz equations of the solution are determined, of which the sets of the zeros give the solution of the model, and can be determined relatively easily. A comparison of the solution to that of the standard pairing interaction with constant interaction strength among pairs in any orbit is made. It is shown that the overlaps of eigenstates of the model with those of the standard pairing model are always large, especially for the ground and the first excited state. However, the quantum phase crossover in the non-separable pairing model cannot be accounted for by the standard pairing interaction.Comment: 5 pages, 1 figure, LaTe

    Distributionally Robust Circuit Design Optimization under Variation Shifts

    Full text link
    Due to the significant process variations, designers have to optimize the statistical performance distribution of nano-scale IC design in most cases. This problem has been investigated for decades under the formulation of stochastic optimization, which minimizes the expected value of a performance metric while assuming that the distribution of process variation is exactly given. This paper rethinks the variation-aware circuit design optimization from a new perspective. First, we discuss the variation shift problem, which means that the actual density function of process variations almost always differs from the given model and is often unknown. Consequently, we propose to formulate the variation-aware circuit design optimization as a distributionally robust optimization problem, which does not require the exact distribution of process variations. By selecting an appropriate uncertainty set for the probability density function of process variations, we solve the shift-aware circuit optimization problem using distributionally robust Bayesian optimization. This method is validated with both a photonic IC and an electronics IC. Our optimized circuits show excellent robustness against variation shifts: the optimized circuit has excellent performance under many possible distributions of process variations that differ from the given statistical model. This work has the potential to enable a new research direction and inspire subsequent research at different levels of the EDA flow under the setting of variation shift.Comment: accepted by ICCAD 2023, 8 page

    Projective Ranking-based GNN Evasion Attacks

    Full text link
    Graph neural networks (GNNs) offer promising learning methods for graph-related tasks. However, GNNs are at risk of adversarial attacks. Two primary limitations of the current evasion attack methods are highlighted: (1) The current GradArgmax ignores the "long-term" benefit of the perturbation. It is faced with zero-gradient and invalid benefit estimates in certain situations. (2) In the reinforcement learning-based attack methods, the learned attack strategies might not be transferable when the attack budget changes. To this end, we first formulate the perturbation space and propose an evaluation framework and the projective ranking method. We aim to learn a powerful attack strategy then adapt it as little as possible to generate adversarial samples under dynamic budget settings. In our method, based on mutual information, we rank and assess the attack benefits of each perturbation for an effective attack strategy. By projecting the strategy, our method dramatically minimizes the cost of learning a new attack strategy when the attack budget changes. In the comparative assessment with GradArgmax and RL-S2V, the results show our method owns high attack performance and effective transferability. The visualization of our method also reveals various attack patterns in the generation of adversarial samples.Comment: Accepted by IEEE Transactions on Knowledge and Data Engineerin

    Agriculture intensifies soil moisture decline in Northern China

    Get PDF
    Northern China is one of the most densely populated regions in the world. Agricultural activities have intensified since the 1980s to provide food security to the country. However, this intensification has likely contributed to an increasing scarcity in water resources, which may in turn be endangering food security. Based on in-situ measurements of soil moisture collected in agricultural plots during 1983–2012, we find that topsoil (0–50cm) volumetric water content during the growing season has declined significantly (p < 0.01), with a trend of −0.011 to −0.015 m3 m−3 per decade. Observed discharge declines for the three large river basins are consistent with the effects of agricultural intensification, although other factors (e.g. dam constructions) likely have contributed to these trends. Practices like fertilizer application have favoured biomass growth and increased transpiration rates, thus reducing available soil water. In addition, the rapid proliferation of water-expensive crops (e.g., maize) and the expansion of the area dedicated to food production have also contributed to soil drying. Adoption of alternative agricultural practices that can meet the immediate food demand without compromising future water resources seem critical for the sustainability of the food production system

    Boosting the eco-friendly sharing economy: The effect of gasoline prices on bikeshare ridership in three U.S. metropolises

    Get PDF
    Transportation has become the largest CO2 emitter in the United States in recent years with low gasoline prices standing out from many contributors. As demand side changes are called for reducing car use, the fast-growing sharing economy shows great potential to shift travel demand away from single-occupancy vehicles. Although previous inter-disciplinary research on shared mobility has explored its multitudes of benefits, it is yet to be investigated how the uptake of this eco-friendly sharing scheme is affected by gasoline prices. In this study, we examine the impact of gasoline prices on the use of bikeshare programs in three U.S. metropolises: New York City, Boston, and Chicago. Using bikeshare trip data, we estimate the impact of citywide gasoline prices on both bikeshare trip duration and trip frequency in a generalized linear regression setting. The results suggest that gasoline prices significantly affect bikeshare trip frequency and duration, with a noticeable surge in short trips. Doubling gasoline prices could help save an average of 1933 gallons of gasoline per day in the three cities, approximately 0.04% of the U.S. daily per capita gasoline consumption. Our findings indicate that fuel pricing could be an effective policy tool to support technology driven eco-friendly sharing mobility and boost sustainable transportation

    A Novel Deep Learning based Automatic Auscultatory Method to Measure Blood Pressure

    Get PDF
    Background: It is clinically important to develop innovative techniques that can accurately measure blood pressures (BP) automatically. Objectives: This study aimed to present and evaluate a novel automatic BP measurement method based on deep learning method, and to confirm the effects on measured BPs of the position and contact pressure of stethoscope. Methods: 30 healthy subjects were recruited. 9 BP measurements (from three different stethoscope contact pressures and three repeats) were performed on each subject. The convolutional neural network (CNN) was designed and trained to identify the Korotkoff sounds at a beat-by-beat level. Next, a mapping algorithm was developed to relate the identified Korotkoff beats to the corresponding cuff pressures for systolic and diastolic BP (SBP and DBP) determinations. Its performance was evaluated by investigating the effects of the position and contact pressure of stethoscope on measured BPs in comparison with reference manual auscultatory method. Results: The overall measurement errors of the proposed method were 1.4 ± 2.4 mmHg for SBP and 3.3 ± 2.9 mmHg for DBP from all the measurements. In addition, the method demonstrated that there were small SBP differences between the 2 stethoscope positions, respectively at the 3 stethoscope contact pressures, and that DBP from the stethoscope under the cuff was significantly lower than that from outside the cuff by 2.0 mmHg (P < 0.01). Conclusion: Our findings suggested that the deep learning based method was an effective technique to measure BP, and could be developed further to replace the current oscillometric based automatic blood pressure measurement method
    • …
    corecore