26 research outputs found

    Cigarette smoking as a risk factor for auditory problems

    Get PDF
    Smoking is a public health concern and we are still unsure of its relation with auditory problems. AIM: To study the effects of cigarette smoking in auditory thresholds, in otoacoustic emissions and in their inhibition by the efferent olivocochlear medial system. MATERIALS AND METHODS: 144 adults from both genders, between 20 and 31 years of age, smoking and non-smoking individuals were submitted to conventional and high-frequency audiometry, transient stimuli otoacoustic emissions and suppression effect investigation. RESULTS: smokers presented worse auditory thresholds in the frequencies of 12.500Hz in the right ear and 14,000 kHz in both ears. Regarding the otoacoustic emissions, smokers group presented a lower response level in the frequencies of 1,000Hz in both ears and 4,000Hz in the left ear. Among smokers there were more cases of cochlear dysfunction and tinnitus. CONCLUSION: Our results suggest that cigarette smoking has an adverse effect on the auditory system.O tabagismo é um problema de saúde pública e ainda não se sabe ao certo sua relação com problemas auditivos. OBJETIVO:Verificar o efeito do cigarro nos limiares audiométricos, na ocorrência das emissões otoacústicas e na inibição das mesmas pelo sistema eferente olivococlear medial. MATERIAL E MÉTODO: 144 adultos de ambos os sexos, entre 20 a 31 anos, fumantes e não fumantes, foram submetidos a audiometria convencional e de alta frequência, emissões otoacústicas por estímulo transiente e a pesquisa do efeito de supressão. RESULTADOS: O grupo de fumantes apresentou limiares auditivos piores nas frequências 12500Hz na orelha direita e 14000Hz em ambas orelhas. Nas emissões otoacústicas apresentou nível de resposta menor nas frequências de 1000Hz em ambas orelhas e 4000Hz na orelha esquerda. O grupo de fumantes também apresentou maior número de casos com disfunção coclear e queixa de zumbido. CONCLUSÃO: Os resultados do estudo sugerem que o cigarro tem um efeito nocivo no sistema auditivo.Universidade Federal de São Paulo (UNIFESP)UNIFESPSciEL

    a degradation study of a humanoid skin mask made of soft urethane elastomer

    Get PDF
    Funding Information: The authors would like to thank Dr. Clarimma Sessa, of the Chair of Conservation-Restoration, Art Technology and Conservation Science at the TUM for her support with SEM-EDX investigations; Prof. Takuya Hashimoto of the Tokyo University of Science for sharing information about the robot SAYA; Dr. Frank Dittmann, Nicolas Lange and Susanne Grießbach, curators and conservator of the Deutsches Museum respectively, for the fruitful discussions on the decision-making-process regarding the preservation of SAYA. Publisher Copyright: © 2022, The Author(s).Understanding the degradation of plastic materials is a big challenge for curators, conservators and conservation scientists in museums worldwide aiming to preserve their collections due to the variety of formulations of synthetic polymers and pigments. The conservation of polyurethane (PUR) based objects is challenging because they can suffer from extensive degradation. Particularly PUR elastomers can degrade shortly after their production, as occurred to the mask of the Japanese robot SAYA, which within 8 years suffered from two large tears, discoloration and stickiness. This research aims at studying the degradation phenomena of the androids’ synthetic skin. Better knowledge of the chemical composition of the mask and the chemical and physical decay will contribute to planning a suitable stabilization treatment. Within a multi-analytical approach, colorimetric and microscopic investigations highlighted discolored areas, which showed further color changes within a five months monitoring campaign, confirming the instability of the material likely due to ongoing degradation. Raman microscopy allowed the identification of Pigment White 6 (titanium dioxide TiO2) in the anatase form, known to promote the photosensitivity of PUR substrates towards ultraviolet (UV) light. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy identified the PUR composition of the mask, the presence of phthalates as plasticizers and suggested the formation of quinone chromophores in the polymer structure as a result of photo-oxidation, possibly responsible for the mask yellowing. Evolved gas analysis-mass spectrometry (EGA-MS) and double-shot-gas chromatography/mass spectrometry (TD/Py–GC/MS) analyses support the characterization of the formulation of the mask as being made of methylene diphenyl diisocyanate (MDI) PUR ether elastomer. Plasticizers in high concentration, mainly diisononyl phthalate (DINP) and bis(2-ethylhexyl)phthalate (DEHP), and the UV stabilizer Tinuvin 328 were also detected. In addition, the presence of styrene-acrylonitrile (SAN) could also contribute to the mask’s chemical instability. More amount of UV stabilizer and phthalates were detected at the surface (contributing to its stickiness) than in the inner core. The degradation of the mask results from the light susceptibility of MDI PUR ether and SAN, as well as the higher photochemical activity of anatase. The mask was transferred on to a mannequin and placed in the storage area to prevent light exposure and photo-oxidation. As loose edges had to be stabilized, tests were conducted and adhesive stripes glued with a PUR dispersion were selected for keeping the head’s shape. The novelty of this study is the implementation of conservation science on the study of androids with PUR elastomeric components in robotic collections, which are becoming increasingly popular in technical museums, however still seldomly studied.publishersversionpublishe

    Shedding Light on Degradation Gradients in Celluloid: An ATR-FTIR Study of Artificially and Naturally Aged Specimens

    Get PDF
    : Celluloid artifacts are known by conservation professionals to be prone to degradation, threatening their own integrity and that of nearby heritage collections. Celluloid alteration can have a heterogeneous nature, and this research topic is still in its infancy for heritage science. This article investigates degradation gradients, both along depth and width, of artificially aged celluloid sheets, and compares them to three-dimensional (3D) historical objects with the aim of gaining a better insight into the nature and evolution of their decay. ATR-FTIR was used to systematically study different sampling points of the artificially and naturally aged specimens and allowed us to recognize better-preserved surfaces and more deteriorated cores. ATR-FTIR was found suitable for assessing the molecular changes induced by degradation, particularly denitration and formation of carbonyl-containing degradation products in severely aged specimens. Even though the severely artificially aged sheets displayed unusual alteration phenomena, they present a degradation gradient similar to the one observed for the naturally aged 3D objects under study. This research underlines that sampling at different depths and/or widths is relevant for characterizing the heterogeneity of degraded celluloid, and further investigation with chromatographic techniques would greatly benefit the understanding of the complex degradation of celluloid artifacts

    Discoloration of historical plastic objects: New insight into the degradation of β-naphthol pigment lakes

    Get PDF
    Funding Information: This research was funded by Funda??o para a Ci?ncia e a Tecnologia, Minist?rio da Ci?ncia Tecnologia e Ensino Superior (FCT/MCTES), Portugal, through doctoral programme CORESPD/00253/2012, PB/BD/114412/2016 doctoral grant. Associate Laboratory for Green Chemistry? LAQV,(PTDC/IVC-HFC/5174/2014). Publisher Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Light is a determining factor in the discoloration of plastics, and photodegradation processes can affect the molecular structures of both the polymer and colorants. Limited studies focused on the discoloration of heritage plastics in conservation science. This work investigated the discoloration of red historical polyethylene (PE) objects colored with PR 48:2 and PR 53:1. High-density and low-density PE reference polymers, neat pigment powders, and historical samples were assessed before and after accelerated photoaging. The applied methodology provided insight into the individual light-susceptibility of polyethylenes, organic pigment lakes, and their combined effect in the photoaging of historical plastic formulations. After light exposure, both PE references and historical samples yellowed, PR53:1 faded, and PR 48:2 darkened; however, both organic pigments faded severely in the historical samples. This highlights the role played by the plastic binder likely facilitating the pigment photofading. Fourier transform infrared spectroscopy and mass spectrometry techniques—EGA-MS, PY-GC/MS, and TD-GC/MS—were successfully employed for characterizing the plastic formulations and degradation. The identification of phthalic compounds in both aged β-naphthol powders opens new venues for studies on their degradation. This work’s approach and analytical methods in studying the discoloration of historical plastics are novel, proving their efficacy, reliability, and potentiality.publishersversionpublishe

    Characterization and long-term stability of historical PMMA: Impact of additives and acrylic sheet industrial production processes

    Get PDF
    SFRH/BD/52318/2013 IF/00653/2015 UIDB/50006/2020 UIDB/04349/2020This work aims at understanding the influence of the production processes and materials in the properties and long term behavior of acrylic sheet, i.e., poly(methyl methacrylate) (PMMA), a material generally considered very stable in museum collections. A comparative study was conducted in samples from cast acrylic sheets produced in the early 2000s, from which manufacturing details were known, and samples provided by the artist Lourdes Castro from acrylic sheets she had bought in the 1960s. Transparent and red opaque cast acrylic samples, containing cadmium red pigment, were used. All samples were artificially aged in a solarbox with irradiation Λ > 300 nm for a total period of 8000 h, and alterations were followed by a multi-analytical approach which included Raman, infrared (FTIR-ATR) and UV-Vis spectroscopies; gravimetry; size exclusion chromatography (SEC); thermogravimetry (TGA); micro-indentation; colorimetry; and optical microscopy. Not all cast PMMA sheets presented similar stabilities. We have concluded that the production processes (which may include the polymerization conditions, the organic additives and the origin of the monomer) play a more important role in the properties and long-term behavior of these acrylic sheets than the presence of cadmium red and/or the age of the material.publishersversionpublishe

    Cancer-cell intrinsic gene expression signatures overcome intratumoural heterogeneity bias in colorectal cancer patient classification

    Get PDF
    Stromal-derived intratumoural heterogeneity (ITH) has been shown to undermine molecular stratification of patients into appropriate prognostic/predictive subgroups. Here, using several clinically relevant colorectal cancer (CRC) gene expression signatures, we assessed the susceptibility of these signatures to the confounding effects of ITH using gene expression microarray data obtained from multiple tumour regions of a cohort of 24 patients, including central tumour, the tumour invasive front and lymph node metastasis. Sample clustering alongside correlative assessment revealed variation in the ability of each signature to cluster samples according to patient-of-origin rather than region-of-origin within the multi-region dataset. Signatures focused on cancer-cell intrinsic gene expression were found to produce more clinically useful, patient-centred classifiers, as exemplified by the CRC intrinsic signature (CRIS), which robustly clustered samples by patient-of-origin rather than region-of-origin. These findings highlight the potential of cancer-cell intrinsic signatures to reliably stratify CRC patients by minimising the confounding effects of stromal-derived ITH

    Multilevel genomics of colorectal cancers with microsatellite instability—clinical impact of JAK1 mutations and consensus molecular subtype 1

    Get PDF
    Background Approximately 15% of primary colorectal cancers have DNA mismatch repair deficiency, causing a complex genome with thousands of small mutations—the microsatellite instability (MSI) phenotype. We investigated molecular heterogeneity and tumor immunogenicity in relation to clinical endpoints within this distinct subtype of colorectal cancers. Methods A total of 333 primary MSI+ colorectal tumors from multiple cohorts were analyzed by multilevel genomics and computational modeling—including mutation profiling, clonality modeling, and neoantigen prediction in a subset of the tumors, as well as gene expression profiling for consensus molecular subtypes (CMS) and immune cell infiltration. Results Novel, frequent frameshift mutations in four cancer-critical genes were identified by deep exome sequencing, including in CRTC1, BCL9, JAK1, and PTCH1. JAK1 loss-of-function mutations were validated with an overall frequency of 20% in Norwegian and British patients, and mutated tumors had up-regulation of transcriptional signatures associated with resistance to anti-PD-1 treatment. Clonality analyses revealed a high level of intra-tumor heterogeneity; however, this was not associated with disease progression. Among the MSI+ tumors, the total mutation load correlated with the number of predicted neoantigens (P = 4 × 10−5), but not with immune cell infiltration—this was dependent on the CMS class; MSI+ tumors in CMS1 were highly immunogenic compared to MSI+ tumors in CMS2-4. Both JAK1 mutations and CMS1 were favorable prognostic factors (hazard ratios 0.2 [0.05–0.9] and 0.4 [0.2–0.9], respectively, P = 0.03 and 0.02). Conclusions Multilevel genomic analyses of MSI+ colorectal cancer revealed molecular heterogeneity with clinical relevance, including tumor immunogenicity and a favorable patient outcome associated with JAK1 mutations and the transcriptomic subgroup CMS1, emphasizing the potential for prognostic stratification of this clinically important subtype. See related research highlight by Samstein and Chan 10.1186/s13073-017-0438-
    corecore