188 research outputs found

    New Zealand contributions to the global earthquake model’s earthquake consequences database (GEMECD)

    Get PDF
    The Global Earthquake Model’s (GEM) Earthquake Consequences Database (GEMECD) aims to develop, for the first time, a standardised framework for collecting and collating geocoded consequence data induced by primary and secondary seismic hazards to different types of buildings, critical facilities, infrastructure and population, and relate this data to estimated ground motion intensity via the USGS ShakeMap Atlas. New Zealand is a partner of the GEMECD consortium and to-date has contributed with 7 events to the database, of which 4 are localised in the South Pacific area (Newcastle 1989; Luzon 1990; South of Java 2006 and Samoa Islands 2009) and 3 are NZ-specific events (Edgecumbe 1987; Darfield 2010 and Christchurch 2011). This contribution to GEMECD represented a unique opportunity for collating, comparing and reviewing existing damage datasets and harmonising them into a common, openly accessible and standardised database, from where the seismic performance of New Zealand buildings can be comparatively assessed. This paper firstly provides an overview of the GEMECD database structure, including taxonomies and guidelines to collect and report on earthquake-induced consequence data. Secondly, the paper presents a summary of the studies implemented for the 7 events, with particular focus on the Darfield (2010) and Christchurch (2011) earthquakes. Finally, examples of specific outcomes and potentials for NZ from using and processing GEMECD are presented, including: 1) the rationale for adopting the GEM taxonomy in NZ and any need for introducing NZ-specific attributes; 2) a complete overview of the building typological distribution in the Christchurch CBD prior to the Canterbury earthquakes and 3) some initial correlations between the level and extent of earthquake-induced physical damage to buildings, building safety/accessibility issues and the induced human casualtie

    Feasibility and Detailing of Post-tensioned Timber Buildings for Seismic Areas

    Get PDF
    Paper 53This paper describes the structural design and selection of construction detailing for low-rise multi-storey timber buildings using a new and exciting structural timber system. This system, originally developed for use with pre-cast concrete, combines the use of un-bonded post-tensioning techniques and additional sources of energy dissipation. This system eliminates residual displacement, while greatly reducing the damage to structural members during a significant seismic event. The paper shows how this new structural system can be used with large size structural timber members manufactured from laminated veneer lumber (LVL) or glulam timber, for use in multistorey buildings, with lateral load resistance provided by post-tensioned structural timber frames or walls, separately or in combination. An extensive on-going research program at the University of Canterbury, New Zealand has tested a wide range of beam-to-column, wall-to-foundation and column-to-foundation connections under simulated seismic loading, all giving excellent results. As part of this contribution, a case study of the design methods, construction options, cost and feasibility of a six storey timber office building in a moderate seismic area is carried out. The structural design of this building allowed investigation of different methods of structural analysis, and the development of many construction and connection details offering feasibility of rapid construction. Total building cost was evaluated and compared to equivalent steel and reinforced concrete options

    Effects of soil-foundation-structure interaction on seismic structural response via robust Monte Carlo simulation

    Get PDF
    Uncertainties involved in the characterization and seismic response of soil-foundation-structure systems along with the inherent randomness of the earthquake ground motion result in very complex (and often controversial) effects of soil-foundation-structure interaction (SFSI) on the seismic response of structures. Conventionally, SFSI effects have been considered beneficial (reducing the structural response), however, recent evidence from strong earthquakes has highlighted the possibility of detrimental effects or increase in the structural response due to SFSI. This paper investigates the effects of SFSI on seismic response of structures through a robust Monte Carlo simulation using a wide range of realistic SFS systems and earthquake input motions in time-history analyses. The results from a total of 1.36 million analyses are used to rigorously quantify the SFSI effects on structural distortion and total horizontal displacement of the structure, and to identify conditions (system properties and earthquake motion characteristics) under which SFSI increases the structural response

    Natural peptides with antioxidant activity from Atlantic cod and Atlantic salmon residual material

    Get PDF
    Summary. Water-soluble peptides/proteins with molecular weight below 10 kDa were isolated from residual material of cod (liver, skin, and cod mix i.e. skin, frames, and viscera), and salmon (skin, and salmon mix i.e. skin, frames, and viscera) by cut-off filtration. Peptide motifs with reported bioactivity were identified in all samples by liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) (Orbitrap), bioinformatics, and database search. Peptides with potential type 2 diabetes, cardio system, immunomodulation, prolyl endopeptidase (PEP), and antioxidant activity were detected. The potential antioxidant activity in the samples was confirmed by two antioxidant assays, namely hydroxyl radical scavenging activity (HRSA), and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS) radical cation decolorization assay. In these assays the salmon samples were found to possess higher antioxidant activity than the cod samples. All samples except the cod skin were found to have higher antioxidant activity than alanine-histidine (AH), a dipeptide with known antioxidant activity. Industrial relevance. Residual material from fisheries and aquaculture makes up large quantities of material. Although previously regarded as waste this material has valuable components that are of interest for the biotech industry. The fractionation process utilized in this work offers the possibility for simple isolation of interesting peptides with antioxidant activity. This method should be of interest for the food industry and biotech industry for product development

    Modeling of Environmental Fate and Effects of Oil Leakages from Abandoned Subsea Wells Using an Environmental Impact Factor Tool

    Get PDF
    Potential environmental consequences of oil leakages (i.e., continuous uncontrolled releases at low flow rate over a long period of time) need to be taken into consideration in the ongoing development of plug and abandonment (P&A) activities on the Norwegian continental shelf. Regulations of P&A wells employ a “zero leakage” target; however, environmental risk monitoring strategies for permanent abandonment are not yet in place. Predicting and estimating the consequences of adverse environmental impacts through a modeling approach can play a key role in evaluating and monitoring environmental risk. In this paper, we present a modeling study of the fate and effects of an oil leakage from abandoned wells using a theoretical scenario on the Norwegian continental shelf. Environmental impact factors (EIFs) derived from the Dose related Risk and Effect Assessment Model (DREAM), previously designed to characterize the effects of produced water discharges, were used to assess impacts of leakages from abandoned wells. Exposure assessments for the EIFs were modified to include specific hydrocarbon contributions derived from different sized oil droplets from the leakages. Because DREAM is not generally used for chronic low-rate oil releases, an update of the database with chronic predicted no-effect concentrations, as input data for effects modeling, was conducted. In general, EIFs became stable after simulations of 30 d. The area from the release site and up to a few hundred meters southward had the most locations of high impact. Chronic exposure and effects on organisms potentially occurred as a steady-state effect over a long period. Risks, at which more than 95% of species will be negatively affected, appeared surrounding the release site, indicating a need for mitigation measures. These results show that the EIF tool can be used for risk management and P&A regulation by identifying potentially harmful leakages.publishedVersio

    Relationships between Isomeric Metabolism and Regioselective Toxicity of Hydroxychrysenes in Embryos of Japanese Medaka (Oryzias latipes)

    Get PDF
    Oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) are ubiquitous contaminants that can be formed through oxidation of parent PAHs. Our previous studies found 2-hydroxychrysene (2-OHCHR) to be significantly more toxic to Japanese medaka embryos than 6-hydroxychrysene (6-OHCHR), an example of regioselective toxicity. We have also previously identified a sensitive developmental window to 2-OHCHR toxicity that closely coincided with liver development, leading us to hypothesize that differences in metabolism may play a role in the regioselective toxicity. To test this hypothesis, Japanese medaka embryos were treated with each isomer for 24 h during liver development (52–76 hpf). Although 6-OHCHR was absorbed 97.2 ± 0.18% faster than 2-OHCHR, it was eliminated 57.7 ± 0.36% faster as a glucuronide conjugate. Pretreatment with cytochrome P450 inhibitor, ketoconazole, reduced anemia by 96.8 ± 3.19% and mortality by 95.2 ± 4.76% in 2-OHCHR treatments. Formation of chrysene-1,2-diol (1,2-CAT) was also reduced by 64.4 ± 2.14% by ketoconazole pretreatment. While pretreatment with UDP-glucuronosyltransferase inhibitor, nilotinib, reduced glucuronidation of 2-OHCHR by 52.4 ± 2.55% and of 6-OHCHR by 63.7 ± 3.19%, it did not alter toxicity for either compound. These results indicate that CYP-mediated activation, potentially to 1,2-CAT, may explain the isomeric differences in developmental toxicity of 2-OHCHR.publishedVersio

    Investigating the compressive toe of post-tensioned CLT core-walls using particle tracking technology

    Get PDF
    Post-tensioned timber technology was originally developed and researched at the University of Canterbury (UC) in New Zealand in 2005. It can provide a low-damage seismic design solution for multi-storey mass timber buildings. Since mass timber products, such as cross-laminated timber (CLT), have high in-plane stiffness, a post-tensioned timber shear wall will deform mainly in a rocking mechanism. The moment capacity of the wall at the base is commonly determined using the elastic form of the Modified Monolithic Beam Analogy (MMBA). In the calculation of the moment capacity at the wall base, it is critical to accurately predict the location of the neutral axis and the timber compressive stress distribution. Three 2/3 scale 8.6m tall post-tensioned CLT walls were experimentally tested under quasi-static cyclic loading – both uni-directional and bi-directional- in this study. These specimens included a single wall, a coupled wall, and a C-shaped core-wall. The main objective was to develop post-tensioned C-shaped timber core-walls for tall timber buildings with enhanced lateral strength and stiffness. To better understand the timber compressive stress distributions at the wall base, particle tracking technology (PTT) technology was applied for the first time to investigate the behaviour of the compression toe. Previous post-tensioned timber testing primarily used the displacement measurements to determine the timber compressive behavior at the wall base or rocking interfaces. However, by using PTT technology, the timber strain measurements in the compression zone can be much more accurate as PTT is able to track the movement of many particles on the timber surface. This paper presents experimental testing results of post-tensioned CLT walls with a focus on capturing timber compressive behavior using PTT. The PTT measurements were able to better capture small base rotations which occurred at the onset of gap opening and capture unexpected phenomena in core-wall tests. The single wall test result herein presented indicates that while the MMBA could predict the moment rotation behavior with reasonable accuracy, the peak strain response was under predicted in the compression toe. Further detailed study is required to better understand the complex strain fields generated reflective of the inherent cross-thickness inhomogeneity and material variability of CLT

    Performance of road bridges during the 14 November 2016 Kaikōura earthquake

    Get PDF
    The transport infrastructure was majorly affected by the 14lh November 2016 Kaikōura Earthquake. Severe vertical and horizontal peak ground accelerations generated high inertial forces, land-slides, and liquefaction. Most of the bridges in the Hurunui, Malborough and Kaikōura districts were critical nodes to the railway and road networks. In total, 904 road bridges across those districts were affected. Two reached the life safety limit state, suffering severe damage, however, most of the affected bridges experienced only minor to moderate damage. This paper describes the structural performance of the most severely damaged bridges based on observations made from site inspections. In addition to this, several performance issues have arisen from this event and are posed in this paper, hopefully to be addressed in the near future

    The proximate composition of three marine pelagic fish: blue whiting (Micromesistius poutassou), boarfish (Capros aper) and Atlantic herring (Clupea harengus)

    Get PDF
    peer reviewedThis study presents data from an in-depth proximate compositional analysis of three marine fish species: blue whiting (Micromesistius poutassou), boarfish (Capros aper) and Atlantic herring (Clupea harengus). These fish contained significant amounts of protein (16–17%), lipids (4–11%) and minerals (2–6% ash). The proteins, particularly from boarfish, had close to optimum amino acid profiles for human and fish nutrition. They compared favourably with other fish species in terms of total lipids and relative concentration of the omega-3 fatty acids docosahexaenoic acid and eicosapentaenoic acid (11.8–13.3% and 5.9–8.1% in triacylglycerols [TG] and 24.6–35.4% and 5.8–12.0% in phospholipids [PL]). Atlantic herring had the highest lipid content among the three fish and was found to contain high levels of PL poly-unsaturated fatty acids, including omega-3 fatty acids. Minerals detected in the fish included calcium (272–1,520 mg/100 g), phosphorus (363–789 mg/100 g), iron (1.07–2.83 mg/100 g), magnesium (40.70–62.10 mg/100 g), potassium (112.00–267.00 mg/100 g), selenium (0.04–0.06 mg/100 g), sodium (218.00–282.00 mg/100 g) and zinc (1.29–5.57 mg/100 g). Boarfish had the highest ash fraction and also the highest levels of all the minerals, except potassium. Atlantic herring had considerably lower mineral content compared with the other two species and, levels detected were also lower than those reported in previously published studies. Heavy metals contents were quantified, and levels were significantly below the maximum allowable limits for all elements except arsenic, which ranged from 1.34 to 2.44 mg/kg in the three fish species. Data outlined here will be useful for guiding product development. Future studies would benefit from considering catch season, sex and developmental stage of the fish
    corecore