17 research outputs found

    Managing the Socially Marginalized: Attitudes Towards Welfare, Punishment and Race

    Get PDF
    Welfare and incarceration policies have converged to form a system of governance over socially marginalized groups, particularly racial minorities. In both of these policy areas, rehabilitative and social support objectives have been replaced with a more punitive and restrictive system. The authors examine the convergence in individual-level attitudes concerning welfare and criminal punishment, using national survey data. The authors\u27 analysis indicates a statistically significant relationship between punitive attitudes toward welfare and punishment. Furthermore, accounting for the respondents\u27 racial attitudes explains the bivariate relationship between welfare and punishment. Thus, racial attitudes seemingly link support for punitive approaches to opposition to welfare expenditures. The authors discuss the implications of this study for welfare and crime control policies by way of the conclusion

    Rural Cooperatives Magazine, January/February 2004

    No full text
    Features- On the front line; Wisconsin co-op offers fresh approach to produce auctions; Agribusiness, co-ops awarded $28 million in USDA grants; Boosting the giant; African ag co-ops leading fight against HIV/ AIDS; Meeting the test; Co-op leaders focus on strategies for success; How business culture drives economic behavior in co-ops; Farmer co-op sales, income fall in 200

    KIR channels function as electrical amplifiers in rat vascular smooth muscle

    No full text
    Strong inward rectifying K+ (KIR) channels have been observed in vascular smooth muscle and can display negative slope conductance. In principle, this biophysical characteristic could enable KIR channels to ‘amplify’ responses initiated by other K+ conductances. To test this, we have characterized the diversity of smooth muscle KIR properties in resistance arteries, confirmed the presence of negative slope conductance and then determined whether KIR inhibition alters the responsiveness of middle cerebral, coronary septal and third-order mesenteric arteries to K+ channel activators. Our initial characterization revealed that smooth muscle KIR channels were highly expressed in cerebral and coronary, but not mesenteric arteries. These channels comprised KIR2.1 and 2.2 subunits and electrophysiological recordings demonstrated that they display negative slope conductance. Computational modelling predicted that a KIR-like current could amplify the hyperpolarization and dilatation initiated by a vascular K+ conductance. This prediction was consistent with experimental observations which showed that 30 μm Ba2+ attenuated the ability of K+ channel activators to dilate cerebral and coronary arteries. This attenuation was absent in mesenteric arteries where smooth muscle KIR channels were poorly expressed. In summary, smooth muscle KIR expression varies among resistance arteries and when channel are expressed, their negative slope conductance amplifies responses initiated by smooth muscle and endothelial K+ conductances. These findings highlight the fact that the subtle biophysical properties of KIR have a substantive, albeit indirect, role in enabling agonists to alter the electrical state of a multilayered artery
    corecore