132 research outputs found

    From model system to clinical medicine: pathophysiologic links of common proteinopathies

    Get PDF
    Recent clinical evidence suggests that Alzheimer disease (AD), Parkinson disease (PD), and dementia with Lewy bodies (DLB), though distinct neurological disorders, have some common pathological features that may have an impact on the clinical characteristics of these diseases. However, the question of whether these disorders have a common pathophysiology remains. Clinton and colleagues recently reported a mouse model that exhibits the combined pathologies of AD, PD, and DLB, a finding that may shed some light on this issue. Using this mouse model, the authors demonstrate that the pathogenic proteins amyloid beta, tau, and alpha-synuclein interact synergistically to enhance the accumulation of one another and accelerate cognitive decline. These data indicate shared pathogenic mechanisms and suggest the possibility that therapeutic interventions successfully targeting one of these pathogenic proteins have implications for a number of related neurodegenerative disorders

    Pathological phosphorylation of tau and TDP-43 by TTBK1 and TTBK2 drives neurodegeneration

    Get PDF
    BACKGROUND: Progressive neuron loss in the frontal and temporal lobes of the cerebral cortex typifies frontotemporal lobar degeneration (FTLD). FTLD sub types are classified on the basis of neuronal aggregated protein deposits, typically containing either aberrantly phosphorylated TDP-43 or tau. Our recent work demonstrated that tau tubulin kinases 1 and 2 (TTBK1/2) robustly phosphorylate TDP-43 and co-localize with phosphorylated TDP-43 in human postmortem neurons from FTLD patients. Both TTBK1 and TTBK2 were initially identified as tau kinases and TTBK1 has been shown to phosphorylate tau epitopes commonly observed in Alzheimer's disease and other tauopathies. METHODS: To further elucidate how TTBK1/2 activity contributes to both TDP-43 and tau phosphorylation in the context of the neurodegeneration seen in FTLD, we examined the consequences of elevated human TTBK1/2 kinase expression in transgenic animal models of disease. RESULTS: We show that C. elegans co-expressing tau/TTBK1 tau/TTBK2, or TDP-43/TTBK1 transgenes in combination exhibit synergistic exacerbation of behavioral abnormalities and increased pathological protein phosphorylation. We also show that C. elegans co-expressing tau/TTBK1 or tau/TTBK2 transgenes in combination exhibit aberrant neuronal architecture and neuron loss. Surprisingly, the TTBK2/TDP-43 transgenic combination showed no exacerbation of TDP-43 proteinopathy related phenotypes. Additionally, we observed elevated TTBK1/2 protein expression in cortical and hippocampal neurons of FTLD-tau and FTLD-TDP cases relative to normal controls. CONCLUSIONS: Our findings suggest a possible etiology for the two most common FTLD subtypes through a kinase activation driven mechanism of neurodegeneration

    The tau tubulin kinases TTBK1/2 promote accumulation of pathological TDP-43

    Get PDF
    Pathological aggregates of phosphorylated TDP-43 characterize amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD-TDP), two devastating groups of neurodegenerative disease. Kinase hyperactivity may be a consistent feature of ALS and FTLD-TDP, as phosphorylated TDP-43 is not observed in the absence of neurodegeneration. By examining changes in TDP-43 phosphorylation state, we have identified kinases controlling TDP-43 phosphorylation in a C. elegans model of ALS. In this kinome-wide survey, we identified homologs of the tau tubulin kinases 1 and 2 (TTBK1 and TTBK2), which were also identified in a prior screen for kinase modifiers of TDP-43 behavioral phenotypes. Using refined methodology, we demonstrate TTBK1 and TTBK2 directly phosphorylate TDP-43 in vitro and promote TDP-43 phosphorylation in mammalian cultured cells. TTBK1/2 overexpression drives phosphorylation and relocalization of TDP-43 from the nucleus to cytoplasmic inclusions reminiscent of neuropathologic changes in disease states. Furthermore, protein levels of TTBK1 and TTBK2 are increased in frontal cortex of FTLD-TDP patients, and TTBK1 and TTBK2 co-localize with TDP-43 inclusions in ALS spinal cord. These kinases may represent attractive targets for therapeutic intervention for TDP-43 proteinopathies such as ALS and FTLD-TDP

    The phosphatase calcineurin regulates pathological TDP-43 phosphorylation

    Get PDF
    Detergent insoluble inclusions of TDP-43 protein are hallmarks of the neuropathology in over 90% of amyotrophic lateral sclerosis (ALS) cases and approximately half of frontotemporal dementia (FTLD-TDP) cases. In TDP-43 proteinopathy disorders, lesions containing aggregated TDP-43 protein are extensively post-translationally modified, with phosphorylated TDP-43 (pTDP) being the most consistent and robust marker of pathological TDP-43 deposition. Abnormally phosphorylated TDP-43 has been hypothesized to mediate TDP-43 toxicity in many neurodegenerative disease models. To date several different kinases have been implicated in the genesis of pTDP, but no phosphatases have been shown to reverse pathological TDP-43 phosphorylation. We have identified the phosphatase calcineurin as an enzyme binding to and catalyzing the removal of pathological C-terminal phosphorylation of TDP-43 in vitro. In C. elegans models of TDP-43 proteinopathy, genetic elimination of calcineurin results in accumulation of excess pTDP, exacerbated motor dysfunction, and accelerated neurodegenerative changes. In cultured human cells, treatment with FK506 (tacrolimus), a calcineurin inhibitor, results in accumulation of pTDP species. Lastly, calcineurin co-localizes with pTDP in degenerating areas of the central nervous system in subjects with FTLD-TDP and ALS. Taken together these findings suggest calcineurin acts on pTDP as a phosphatase in neurons. Furthermore, patient treatment with calcineurin inhibitors may have unappreciated adverse neuropathological consequences

    Rapid Environmental Change over the Past Decade Revealed by Isotopic Analysis of the California Mussel in the Northeast Pacific

    Get PDF
    The anthropogenic input of fossil fuel carbon into the atmosphere results in increased carbon dioxide (CO2) into the oceans, a process that lowers seawater pH, decreases alkalinity and can inhibit the production of shell material. Corrosive water has recently been documented in the northeast Pacific, along with a rapid decline in seawater pH over the past decade. A lack of instrumentation prior to the 1990s means that we have no indication whether these carbon cycle changes have precedence or are a response to recent anthropogenic CO2 inputs. We analyzed stable carbon and oxygen isotopes (Ξ΄13C, Ξ΄18O) of decade-old California mussel shells (Mytilus californianus) in the context of an instrumental seawater record of the same length. We further compared modern shells to shells from 1000 to 1340 years BP and from the 1960s to the present and show declines in the Ξ΄13C of modern shells that have no historical precedent. Our finding of decline in another shelled mollusk (limpet) and our extensive environmental data show that these Ξ΄13C declines are unexplained by changes to the coastal food web, upwelling regime, or local circulation. Our observed decline in shell Ξ΄13C parallels other signs of rapid changes to the nearshore carbon cycle in the Pacific, including a decline in pH that is an order of magnitude greater than predicted by an equilibrium response to rising atmospheric CO2, the presence of low pH water throughout the region, and a record of a similarly steep decline in Ξ΄13C in algae in the Gulf of Alaska. These unprecedented changes and the lack of a clear causal variable underscores the need for better quantifying carbon dynamics in nearshore environments

    Crystal Structure of the HSV-1 Fc Receptor Bound to Fc Reveals a Mechanism for Antibody Bipolar Bridging

    Get PDF
    Herpes simplex virus type-1 expresses a heterodimeric Fc receptor, gE-gI, on the surfaces of virions and infected cells that binds the Fc region of host immunoglobulin G and is implicated in the cell-to-cell spread of virus. gE-gI binds immunoglobulin G at the basic pH of the cell surface and releases it at the acidic pH of lysosomes, consistent with a role in facilitating the degradation of antiviral antibodies. Here we identify the C-terminal domain of the gE ectodomain (CgE) as the minimal Fc-binding domain and present a 1.78-Γ… CgE structure. A 5-Γ… gE-gI/Fc crystal structure, which was independently verified by a theoretical prediction method, reveals that CgE binds Fc at the C (H)2-C (H)3 interface, the binding site for several mammalian and bacterial Fc-binding proteins. The structure identifies interface histidines that may confer pH-dependent binding and regions of CgE implicated in cell-to-cell spread of virus. The ternary organization of the gE-gI/Fc complex is compatible with antibody bipolar bridging, which can interfere with the antiviral immune response

    Claudin 13, a Member of the Claudin Family Regulated in Mouse Stress Induced Erythropoiesis

    Get PDF
    Mammals are able to rapidly produce red blood cells in response to stress. The molecular pathways used in this process are important in understanding responses to anaemia in multiple biological settings. Here we characterise the novel gene Claudin 13 (Cldn13), a member of the Claudin family of tight junction proteins using RNA expression, microarray and phylogenetic analysis. We present evidence that Cldn13 appears to be co-ordinately regulated as part of a stress induced erythropoiesis pathway and is a mouse-specific gene mainly expressed in tissues associated with haematopoietic function. CLDN13 phylogenetically groups with its genomic neighbour CLDN4, a conserved tight junction protein with a putative role in epithelial to mesenchymal transition, suggesting a recent duplication event. Mechanisms of mammalian stress erythropoiesis are of importance in anaemic responses and expression microarray analyses demonstrate that Cldn13 is the most abundant Claudin in spleen from mice infected with Trypanosoma congolense. In mice prone to anaemia (C57BL/6), its expression is reduced compared to strains which display a less severe anaemic response (A/J and BALB/c) and is differentially regulated in spleen during disease progression. Genes clustering with Cldn13 on microarrays are key regulators of erythropoiesis (Tal1, Trim10, E2f2), erythrocyte membrane proteins (Rhd and Gypa), associated with red cell volume (Tmcc2) and indirectly associated with erythropoietic pathways (Cdca8, Cdkn2d, Cenpk). Relationships between genes appearing co-ordinately regulated with Cldn13 post-infection suggest new insights into the molecular regulation and pathways involved in stress induced erythropoiesis and suggest a novel, previously unreported role for claudins in correct cell polarisation and protein partitioning prior to erythroblast enucleation

    Real-time plasma state monitoring and supervisory control on TCV

    Get PDF
    In ITER and DEMO, various control objectives related to plasma control must be simultaneously achieved by the plasma control system (PCS), in both normal operation as well as off-normal conditions. The PCS must act on off-normal events and deviations from the target scenario, since certain sequences (chains) of events can precede disruptions. It is important that these decisions are made while maintaining a coherent prioritization between the real-time control tasks to ensure high-performance operation. In this paper, a generic architecture for task-based integrated plasma control is proposed. The architecture is characterized by the separation of state estimation, event detection, decisions and task execution among different algorithms, with standardized signal interfaces. Central to the architecture are a plasma state monitor and supervisory controller. In the plasma state monitor, discrete events in the continuous-valued plasma state are modeled using finite state machines. This provides a high-level representation of the plasma state. The supervisory controller coordinates the execution of multiple plasma control tasks by assigning task priorities, based on the finite states of the plasma and the pulse schedule. These algorithms were implemented on the TCV digital control system and integrated with actuator resource management and existing state estimation algorithms and controllers. The plasma state monitor on TCV can track a multitude of plasma events, related to plasma current, rotating and locked neoclassical tearing modes, and position displacements. In TCV experiments on simultaneous control of plasma pressure, safety factor profile and NTMs using electron cyclotron heating (ECH) and current drive (ECCD), the supervisory controller assigns priorities to the relevant control tasks. The tasks are then executed by feedback controllers and actuator allocation management. This work forms a significant step forward in the ongoing integration of control capabilities in experiments on TCV, in support of tokamak reactor operation
    • …
    corecore