67 research outputs found

    Long-Term Integrated Studies Show Complex and Surprising Effects of Climate Change in the Northern Hardwood Forest

    Get PDF
    Evaluations of the local effects of global change are often confounded by the interactions of natural and anthropogenic factors that overshadow the effects of climate changes on ecosystems. Long-term watershed and natural elevation gradient studies at the Hubbard Brook Experimental Forest and in the surrounding region show surprising results demonstrating the effects of climate change on hydrologic variables (e.g., evapotranspiration, streamflow, soil moisture); the importance of changes in phenology on water, carbon, and nitrogen fluxes during critical seasonal transition periods; winter climate change effects on plant and animal community composition and ecosystem services; and the effects of anthropogenic disturbances and land-use history on plant community composition. These studies highlight the value of long-term integrated research for assessments of the subtle effects of changing climate on complex ecosystems

    Climate change influences foliar nutrition and metabolism of red maple (Acer rubrum) trees in a northern hardwood forest

    Get PDF
    © The Author(s), 2022. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Blagden, M., Harrison, J. L., Minocha, R., Sanders-DeMott, R., Long, S., & Templer, P. H. Climate change influences foliar nutrition and metabolism of red maple (Acer rubrum) trees in a northern hardwood forest. Ecosphere, 13(2), (2022): e03859. https://doi.org/10.1002/ecs2.3859.Mean annual air temperatures are projected to increase, while the winter snowpack is expected to shrink in depth and duration for many mid- and high-latitude temperate forest ecosystems over the next several decades. Together, these changes will lead to warmer growing season soil temperatures and an increased frequency of soil freeze–thaw cycles (FTCs) in winter. We took advantage of the Climate Change Across Seasons Experiment (CCASE) at the Hubbard Brook Experimental Forest in the White Mountains of New Hampshire, USA, to determine how these changes in soil temperature affect foliar nitrogen (N) and carbon metabolism of red maple (Acer rubrum) trees in 2015 and 2017. Earlier work from this study revealed a similar increase in foliar N concentrations with growing season soil warming, with or without the occurrence of soil FTCs in winter. However, these changes in soil warming could differentially affect the availability of cellular nutrients, concentrations of primary and secondary metabolites, and the rates of photosynthesis that are all responsive to climate change. We found that foliar concentrations of phosphorus (P), potassium (K), N, spermine (a polyamine), amino acids (alanine, histidine, and phenylalanine), chlorophyll, carotenoids, sucrose, and rates of photosynthesis increased with growing season soil warming. Despite similar concentrations of foliar N with soil warming with and without soil FTCs in winter, winter soil FTCs affected other foliar metabolic responses. The combination of growing season soil warming and winter soil FTCs led to increased concentrations of two polyamines (putrescine and spermine) and amino acids (alanine, proline, aspartic acid, γ-aminobutyric acid, valine, leucine, and isoleucine). Treatment-specific metabolic changes indicated that while responses to growing season warming were more connected to their role as growth modulators, soil warming + FTC treatment-related effects revealed their dual role in growth and stress tolerance. Together, the results of this study demonstrate that growing season soil warming has multiple positive effects on foliar N and cellular metabolism in trees and that some of these foliar responses are further modified by the addition of stress from winter soil FTCs.This research was supported by an NSF Long Term Ecological Research (LTER) Grant to Hubbard Brook (NSF 1114804 and 1637685) and an NSF CAREER grant to PHT (NSF DEB1149929). RSD was supported by NSF DGE0947950, a Boston University (BU) Dean's Fellowship, and the BU Program in Biogeoscience. Jamie Harrison was supported by a BU Dean's Fellowship. Megan Blagden was supported by a BU Undergraduate Research Opportunity Program fellowship. This manuscript is a contribution to the Hubbard Brook Ecosystem Study. Hubbard Brook is part of the LTER network, which is supported by the NSF

    The promise and peril of intensive-site-based ecological research: insights from the Hubbard Brook ecosystem study

    Get PDF
    Abstract. Ecological research is increasingly concentrated at particular locations or sites. This trend reflects a variety of advantages of intensive, site-based research, but also raises important questions about the nature of such spatially delimited research: how well does site based research represent broader areas, and does it constrain scientific discovery?We provide an overview of these issues with a particular focus on one prominent intensive research site: the Hubbard Brook Experimental Forest (HBEF), New Hampshire, USA. Among the key features of intensive sites are: long-term, archived data sets that provide a context for new discoveries and the elucidation of ecological mechanisms; the capacity to constrain inputs and parameters, and to validate models of complex ecological processes; and the intellectual cross-fertilization among disciplines in ecological and environmental sciences. The feasibility of scaling up ecological observations from intensive sites depends upon both the phenomenon of interest and the characteristics of the site. An evaluation of deviation metrics for the HBEF illustrates that, in some respects, including sensitivity and recovery of streams and trees from acid deposition, this site is representative of the Northern Forest region, of which HBEF is a part. However, the mountainous terrain and lack of significant agricultural legacy make the HBEF among the least disturbed sites in the Northern Forest region. Its relatively cool, wet climate contributes to high stream flow compared to other sites. These similarities and differences between the HBEF and the region can profoundly influence ecological patterns and processes and potentially limit the generality of observations at this and other intensive sites. Indeed, the difficulty of scaling up may be greatest for ecological phenomena that are sensitive to historical disturbance and that exhibit the greatest spatiotemporal variation, such as denitrification in soils and the dynamics of bird communities. Our research shows that end member sites for some processes often provide important insights into the behavior of inherently heterogeneous ecological processes. In the current era of rapid environmental and biological change, key ecological responses at intensive sites will reflect both specific local drivers and regional trends

    Reduced Snow Cover Alters Root-microbe Interactions and Decreases Nitrification Rates in a Northern Hardwood Forest

    Get PDF
    Snow cover is projected to decline during the next century in many ecosystems that currently experience a seasonal snowpack. Because snow insulates soils from frigid winter air temperatures, soils are expected to become colder and experience more winter soil freeze-thaw cycles as snow cover continues to decline. Tree roots are adversely affected by snowpack reduction, but whether loss of snow will affect root-microbe interactions remains largely unknown. The objective of this study was to distinguish and attribute direct (e.g., winter snow-and/ or soil frost-mediated) vs. indirect (e.g., root-mediated) effects of winter climate change on microbial biomass, the potential activity of microbial exoenzymes, and net N mineralization and nitrification rates. Soil cores were incubated in situ in nylon mesh that either allowed roots to grow into the soil core (2 mm pore size) or excluded root ingrowth (50 μm pore size) for up to 29 months along a natural winter climate gradient at Hubbard Brook Experimental Forest, NH (USA). Microbial biomass did not differ among ingrowth or exclusion cores. Across sampling dates, the potential activities of cellobiohydrolase, phenol oxidase, and peroxidase, and net N mineralization rates were more strongly related to soil volumetric water content (P \u3c 0.05; R2 = 0.25–0.46) than to root biomass, snow or soil frost, or winter soil temperature (R2 \u3c 0.10). Root ingrowth was positively related to soil frost (P \u3c 0.01; R2 = 0.28), suggesting that trees compensate for overwinter root mortality caused by soil freezing by re-allocating resources towards root production. At the sites with the deepest snow cover, root ingrowth reduced nitrification rates by 30% (P \u3c 0.01), showing that tree roots exert significant influence over nitrification, which declines with reduced snow cover. If soil freezing intensifies over time, then greater compensatory root growth may reduce nitrification rates directly via plant-microbe N competition and indirectly through a negative feedback on soil moisture, resulting in lower N availability to trees in northern hardwood forests

    Tree transpiration and urban temperatures: current understanding, implications, and future research directions

    Full text link
    The expansion of an urban tree canopy is a commonly proposed nature-based solution to combat excess urban heat. The influence trees have on urban climates via shading is driven by the morphological characteristics of trees, whereas tree transpiration is predominantly a physiological process dependent on environmental conditions and the built environment. The heterogeneous nature of urban landscapes, unique tree species assemblages, and land management decisions make it difficult to predict the magnitude and direction of cooling by transpiration. In the present article, we synthesize the emerging literature on the mechanistic controls on urban tree transpiration. We present a case study that illustrates the relationship between transpiration (using sap flow data) and urban temperatures. We examine the potential feed backs among urban canopy, the built environment, and climate with a focus on extreme heat events. Finally, we present modeled data demonstrating the influence of transpiration on temperatures with shifts in canopy extent and irrigation during a heat wave.Published versio

    Seasonal fluxes of carbonyl sulfide in a midlatitude forest

    Get PDF
    Carbonyl sulfide (OCS), the most abundant sulfur gas in the atmosphere, has a summer minimum associated with uptake by vegetation and soils, closely correlated with CO2. We report the first direct measurements to our knowledge of the ecosystem flux of OCS throughout an annual cycle, at a mixed temperate forest. The forest took up OCS during most of the growing season with an overall uptake of 1.36 ± 0.01 mol OCS per ha (43.5 ± 0.5 g S per ha, 95% confidence intervals) for the year. Daytime fluxes accounted for 72% of total uptake. Both soils and incompletely closed stomata in the canopy contributed to nighttime fluxes. Unexpected net OCS emission occurred during the warmest weeks in summer. Many requirements necessary to use fluxes of OCS as a simple estimate of photosynthesis were not met because OCS fluxes did not have a constant relationship with photosynthesis throughout an entire day or over the entire year. However, OCS fluxes provide a direct measure of ecosystem-scale stomatal conductance and mesophyll function, without relying on measures of soil evaporation or leaf temperature, and reveal previously unseen heterogeneity of forest canopy processes. Observations of OCS flux provide powerful, independent means to test and refine land surface and carbon cycle models at the ecosystem scale.Engineering and Applied Science

    Roots Mediate the Effects of Snowpack Decline on Soil Bacteria, Fungi, and Nitrogen Cycling in a Northern Hardwood Forest

    Get PDF
    Rising winter air temperature will reduce snow depth and duration over the next century in northern hardwood forests. Reductions in snow depth may affect soil bacteria and fungi directly, but also affect soil microbes indirectly through effects of snowpack loss on plant roots. We incubated root exclusion and root ingrowth cores across a winter climate-elevation gradient in a northern hardwood forest for 29 months to identify direct (i.e., winter snow-mediated) and indirect (i.e., root-mediated) effects of winter snowpack decline on soil bacterial and fungal communities, as well as on potential nitrification and net N mineralization rates. Both winter snowpack decline and root exclusion increased bacterial richness and phylogenetic diversity. Variation in bacterial community composition was best explained by differences in winter snow depth or soil frost across elevation. Root ingrowth had a positive effect on the relative abundance of several bacterial taxonomic orders (e.g., Acidobacterales and Actinomycetales). Nominally saprotrophic (e.g., Saccharomycetales and Mucorales) or mycorrhizal (e.g., Helotiales, Russalales, Thelephorales) fungal taxonomic orders were also affected by both root ingrowth and snow depth variation. However, when grouped together, the relative abundance of saprotrophic fungi, arbuscular mycorrhizal fungi, and ectomycorrhizal fungi were not affected by root ingrowth or snow depth, suggesting that traits in addition to trophic mode will mediate fungal community responses to snowpack decline in northern hardwood forests. Potential soil nitrification rates were positively related to ammonia-oxidizing bacteria and archaea abundance (e.g., Nitrospirales, Nitrosomondales, Nitrosphaerales). Rates of N mineralization were positively and negatively correlated with ectomycorrhizal and saprotrophic fungi, respectively, and these relationships were mediated by root exclusion. The results from this study suggest that a declining winter snowpack and its effect on plant roots each have direct effects on the diversity and abundance of soil bacteria and fungal communities that interact to determine rates of soil N cycling in northern hardwood forests
    • …
    corecore