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Carbonyl sulfide (OCS) is the most abundant sulfur gas in the
atmosphere. Atmospheric mixing ratios of OCS have shown a
summer minimum associated with vegetative uptake, closely cor-
related with CO2. We report the first direct measurements of the
ecosystem flux of OCS throughout an annual cycle above a mixed
temperate forest. The forest took up OCS during most of the
growing season with an annual uptake of -43.5 ± 0.5 gS ha-1 (95%
confidence interval). Night-time fluxes accounted for 28% of the
total uptake, with contributions from soils and incompletely closed
stomata of plants. Unexpected net OCS emission occurred during
the warmest weeks in summer. Many requirements necessary to
use OCS as a simple estimate of photosynthesis were found to be
invalid as OCS fluxes did not have a constant relationship with
photosynthesis throughout the day or over the seasons. However,
OCS fluxes provide evidence of a new stress response, new insight
into the heterogeneity of the forest canopy and a new way to
estimate the ecosystem stomatal conductance, without relying on
the separation of soil evaporation from transpiration or measuring
leaf temperatures. The observed behavior of OCS fluxes provides
new challenges and opportunities for testing land-surface and
carbon-cycle models.

carbonyl sulfide | carbon cycle | sulfur cycle | stomatal conductance |
photosynthesis

INTRODUCTION
Carbonyl sulfide (OCS) is the most abundant sulfur gas in the
atmosphere (1) and biogeochemical cycling of OCS affects both
the stratosphere and troposphere. The tropospheric OCS mixing
ratio is between 300 and 550 ppt (1) (parts per trillion; 10-12; pmol
mol-1), decreasing sharply with altitude in the stratosphere (2).
In times of low volcanic activity, the sulfur budget and aerosol
loading of the stratosphere are largely controlled by transport and
photo-oxidation of OCS from the troposphere (3). The processes
regulating emission and uptake of OCS are important factors in
determining how changes in climate and land cover may impact
the stratospheric sulfate layer.

OCS sources are predominantly from the oceans (4), with
smaller emissions from anthropogenic and terrestrial sources,
such as wetlands and anoxic soils (e.g. 5, 6) and oxic soils during
times of heat or drought stress (e.g. 7, 8). The largest sink for OCS
is the terrestrial biosphere (1, 4, 9), with uptake by both oxic soils
(e.g. 10) and vegetation (e.g. 11). Once OCS passes through the
stomata of plants, consumption of OCS is controlled by carbonic
anhydrase (CA), the same enzyme that hydrolyzes carbon dioxide
(CO2) in the first step of photosynthesis (12). CA catalyses the
irreversible hydrolysis of OCS to H2S and CO2.

The similarities in the uptake pathways have led to the use of
OCS fluxes as a means to estimate CO2 uptake by photosynthesis
(13-15). Net carbon uptake measured in the terrestrial biosphere
(Net Ecosystem Exchange, NEE) is the combination of two large
fluxes: photosynthesis (Gross Primary Productivity, GPP) and
respiration (Ecosystem Respiration, Reco). Using an accepted

standard method (16), GPP is estimated from NEE by subtracting
day-time ecosystem respiration (Reco), which was itself extrapo-
lated from the temperature dependence of night-time NEE (NEE
–Reco = GPP). The uncertainty in the calculation of GPP could be
reduced, and its ecological significance increased, by developing
independent methods of calculation.

Initial OCS ecosystem flux estimations were made using flask
sampling following by analysis via gas chromatography – mass
spectrometry (GC-MS (13, 15), but these studies did not have
sufficient resolution to examine daily or hourly controls on the
OCS flux. Laser spectrometers have been developed in the past
few years to enable direct, in situ measurement of OCS ecosystem
fluxes by eddy covariance. Recently, short-term measurements of
the OCS ecosystem flux above arid forests (17) and an agricultural
field (8, 18) have been reported. In this paper we describe the
factors controlling the hourly, daily, seasonal and annual fluxes of
OCS in a forest ecosystem, using a year (2011) of high frequency,
direct measurements at Harvard Forest, MA, USA. We report
here on the seasonal cycle, the OCS response to environmental
conditions and the total deposition flux of OCS throughout the
year. We compare these fluxes to corresponding measurements
of CO2 flux and derived estimates of photosynthetic uptake of
CO2 and ecosystem respiration.

Significance

We describe the factors controlling the hourly, daily, seasonal
and annual fluxes of carbonyl sulfide (OCS) in a forest ecosys-
tem. Vegetation dominated daytime OCS uptake. Night-time
fluxes accounted for 28% of the total annual uptake, with
contributions from incompletely closed stomata and soils. Net
OCS emission was observed at high temperatures in summer.
Diurnal and seasonal variations in OCS flux do not have con-
stant stoichiometry relative to the photosynthetic uptake of
CO2. Canopy OCS fluxes provide direct information on stom-
atal conductance and other photosynthetic related variables at
the ecosystem scale. OCS can provide significant independent
information on ecosystem processes, but an explicit model
framework is required.
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Fig. 1. Monthly mean OCS (FOCS, pmol m-2 s-1, black) and CO2 (FCO2, µmol
m-2 s-1­, green squares) fluxes for 2011. u* > 0.17 m s-1 for all data. (a) Total
OCS and CO2 flux by month. Air temperature (red triangles, °C) and surface
soil temperatures (orange diamonds, °C); CO2 net flux includes changes in
storage, but this is not required for OCS. (b) Night-time OCS (black) and CO2

(green) flux (PAR < 40 µE m-2 s-1) (c) Day-time OCS and CO2 fluxes with PAR
> 600 µE m-2 s-1. Error bars indicate the 95% confidence intervals for all data
within the month.

Results and Discussion

Details of the measurement method and deployment at the Envi-
ronmental Measurement Site (EMS) flux tower at Harvard Forest
are presented in the Methods and Supporting Information.

Seasonal Fluxes of OCS show strong vegetative uptake.
Ecosystem fluxes of OCS (FOCS) varied through the year with
air and surface soil temperatures and showed complex behavior
(Fig. 1, Supporting Information). The observed time series of OCS
mixing ratios in 2011 followed the typical seasonal cycle measured
previously at Harvard Forest (Fig. S1, (1)). Total net OCS flux for
2011 was -43.5 ± 0.5 gS ha-1 yr-1 (uptake from the atmosphere).
Night-time uptake accounted for -12.3 ± 0.4 gS ha-1 yr-1, ∼28% of
total uptake, peaking in spring and autumn (Fig. 1(b), Supporting
Information).

As expected, the largest uptake fluxes were observed during
summer (Fig. 1). OCS uptake started in April when conifer trees
became active and the snowpack melted to expose the forest soil.
Day-time OCS uptake increased through May and June in paral-
lel with photosynthesis, marked by bud break of deciduous trees
(May 5th) and sharply increased rates of sap flow (May 19th). This
trend was unexpectedly interrupted by strong emission of OCS
during midday hours in late July, when soil moisture was lowest
and air temperatures the warmest of the year. As soil moisture
gradually increased in August, day-time net OCS uptake resumed
but net night-time OCS emission was observed (Fig. 1(b)). In
September and October, the daily total and day-time OCS uptake
flux decreased as air and soil temperatures decreased, while
night-time OCS uptake resumed. Day-time OCS emissions were
observed again in early November, during the senescence of red
oak (Quercus rubra) leaves, cancelling the night-time uptake and
resulting in a daily mean FOCS ∼ 0. In December, low snowfall and
above-freezing air and soil temperatures appeared to stimulate
day-time OCS uptake greater than observed at night, possibly
reflecting uptake of OCS by conifer trees.

Night-time OCS uptake. Night-time, light-independent, up-
take of OCS is likely mediated by both soils and vegetation.

Soil fluxes are significant for both CO2 and OCS, but have
opposite signs: CO2 is respired from soils, while OCS is generally
taken up. Carbonic anhydrase is present in soil microorganisms
(19) typical of oxic soils found at Harvard Forest. OCS is taken up
by these microbes in oxic soils, albeit generally at a slower rate on
the ecosystem scale than OCS uptake by vegetation (20). Hence,
at times of net ecosystem CO2 respiration, the deposition velocity
of OCS relative to CO2 (νOCS:νCO2) is negative (Table 1).

Nighttime transpiration through incompletely closed stomata
has been observed in many tree species (21, 22) and night-time
OCS uptake has been observed in deciduous and conifer forests
during the growing season (23, 24). Maseyk et al [2014] (8)
attributed ∼29% of total OCS flux to night-time OCS uptake
by vegetation, in that case winter wheat, with 1-6% due to soils
at the peak of the growing season. The results of these short-
term studies generally agree with our growing season results.
However, the continued strong uptake of OCS from October
through December (deposition velocity, νOCS = 0.9 - 0.3 cm s-1)
points to continuing OCS uptake after the decline in activity
of the deciduous canopy, and implicating soil uptake as a large
influence on the annual uptake. Persistent uptake by soils, and
potentially conifers, may contribute to the strong vertical gradient
in OCS mixing ratios observed over North America from October
to December (1).

Separating vegetative and soil uptake of OCS and CO2:
In order to separate the influence of soil and vegetative pro-

cesses, we examined time periods when each process dominates:
early December (soil uptake dominant), April/November (soil
and conifer) and May-October (soil, conifer and deciduous trees).

In early December, deciduous leaves were absent and air
temperatures were below freezing. Soil temperatures at Harvard
Forest were 2.5°C higher than the 12 year average (2001-2012) all
the way through October and November, encouraging microbial
activity into the winter, even when air temperatures dropped
below freezing. Our estimate for OCS uptake by active soils, -
7.2 ± 3.4 pmol m-2 s-1, compares well with the average soil flux
measured in a creek area in Colorado (23) of -7 ± 2.6 pmol m-2

s-1 and is slightly greater uptake than the average OCS uptake by
soil in a mixed pine and broad-leaf forest in China (25) of -4.8 ±
2.9 pmol m-2 s-1. As expected with a soil sink, after the soils froze,
the OCS flux was not significantly different from zero (Fig. S5).

Prior to the thaw in April, the mean OCS uptake flux was
indistinguishable from zero. Once the soils thawed and conifer
activity began, daytime uptake (FOCS = -18.8 ± 18.0 pmol m-2 s-1)
was greater than the nighttime OCS uptake (FOCS = -7.7 ± 5.4
pmol m-2 s-1), suggesting daytime conifer leaf uptake of ∼ -11
pmol m-2 s-1. The April nighttime uptake is comparable to the
early December daytime uptake, when air temperatures were be-
low 4°C. At a flux tower (called the Hemlock tower and described
in Supporting Information) located in a conifer stand 500 m from
the primary EMS tower, peak uptake of CO2 was observed in the
April-June period. The conifer-related OCS uptake of -11 pmol
m-2 s-1 observed at the EMS tower in April may be the upper limit
of OCS uptake by conifer species. Future measurements of the
seasonal cycle of the OCS flux in a conifer forest are required
to examine this question. In November, measurements of sap
flow rate (Supporting Information) show that the red oak trees
activity was sharply diminished after November 13th. This date
also marks the time total ecosystem OCS uptake became similar
to the early December soil fluxes, with no statistical difference
between daytime (FOCS = -6.0 ± 10.9 pmol m-2 s-1) and nighttime
(FOCS = -10.3 ± 7.6 pmol m-2 s-1) OCS fluxes.

Ecosystem OCS flux dependence on wind direction. There
is heterogeneity in the tree species distribution within the flux
tower footprint (Supporting Information). In June, August and
September, air arriving at the tower from the north-west (NW;

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204

2 www.pnas.org --- --- Footline Author

205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272



Submission PDF

Table 1. : Monthly mean of (1) Ecosystem deposition velocity of OCS (νOCS), (2) Ratio of
OCS to CO2 deposition velocity (νOCS/νCO2), (3) Ratio of OCS to GPP deposition velocity
(νOCS/GPP*). ‡highlights period of net OCS emission. §The growing season mean (June-
Sept. 2011) was calculated for νOCS/νCO2 and νOCS/GPP* instead of an annual mean.

Apr May Jun Jul‡ Aug Sep Oct Nov Dec Year

νOCS (cm s-1) 1.0 0.7 1.2 -0.85 1.4 1.6 0.9 0.3 0.5 0.5
νOCS/νCO2 -8.9 -8.9 1.5 -1.1 2.4 3.5 6.9 -2.9 -4.2 -4.0§

νOCS/GPP* 5.5 1.8 0.8 -0.6 1.1 1.5 1.7 4.6 16.1 1.8§

Fig. 2. The (left: a, b) Air temperature and (right: c,
d) Photosynthetically Active Radiation (PAR) depen-
dence of (a, c) OCS flux (FOCS, pmol m-2 s-1, black
circles), CO2 flux (FCO2), µmol m-2 s-1­, green squares)
and photosynthesis (calculated as GPP, µmol m-2 s-1­,
red triangles) and (b, d) νOCS/GPP*. 95% CI are shown
as black dashed lines. July data excluded. (a, b) include
night-time data.

Fig. 3. Diel cycles of various fluxes and environmental parameters for July
20th-31st, 2011. (a) OCS (black circles; pmol m-2 s-1) and CO2 fluxes (green
squares; μmol m-2 s-1) and vapor pressure deficit (VPD, magenta dashed
line; Pa/30) (b) Scaled parameters include sap flow rate of oak trees (brown
triangles; gH2O m-2 s-1), photosynthetically active radiation (orange solid
line; 10-8E m-2 s-1), air temperatures (purple long dashed line, °C), vapor
pressure deficit (VPD, magenta dashed line; Pa/30) (c) Air temperature (°C)
vs FOCS (pmol m-2 s-1), with equalized air temperature data bins (d) Vapor
pressure deficit (VPD) (Pa) vs FOCS (pmol m-2 s-1), with equalized VPD data
bins.

mixed conifer and deciduous) sector in the daytime saw almost
twice as much OCS uptake (NW FOCS = -40.9 ± 8.2 pmol m-2

s-1) as air from the south-west (SW; deciduous dominated) sector
(SW FOCS = -23.5 ± 8.2 pmol m-2 s-1). Even though the daytime
net CO2 flux is the same in both wind directions, the increased
daytime OCS uptake flux in air from the NW sector, combined
with increased night-time ecosystem respiration (Reco) from the

Fig. 4. GPP calculated directly from OCS fluxes (GPPOCS, shaded area)
with LRU values of 1 (brown long-dash line), 1.5 (black points) and 2 (or-
ange dotted line) and indirectly extrapolated from night-time temperature
dependent respiration (GPPCO2, green diamonds) for September 2011.Table
1:Monthly mean of (1) Ecosystem deposition velocity of OCS (νOCS), (2)
Ratio of OCS to CO2deposition velocity (νOCS/νCO2), (3) Ratio of OCS to GPP
deposition velocity (νOCS/GPP*). ‡highlights period of net OCS emission. §The
growing season mean (June- Sept. 2011) was calculated for νOCS/νCO2and
νOCS/GPP* instead of an annual mean.

NW, suggests that the magnitude of the daytime Reco and GPP is
greater in air from the conifer dominated north-west sector.

Outside of July, a temporal trend was observed in the OCS
flux in the SW sector, with OCS emission after noon in June
(but with very few data points) and slightly depressed OCS up-
take after noon in August (cancelled out by the large NW OCS
uptake). Both of these periods appear to reflect an influence of
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daytime OCS emission processes outside the period of measured
net emission described below.

Deposition velocity of OCS relative to CO2. Comparing the
deposition velocity of OCS and CO2 for various environmental
conditions allows us to contrast the differing mechanisms in-
volved in the vegetative uptake of each gas species. Both OCS and
CO2 diffuse from the atmosphere through stomata into leaves,
where they are hydrolyzed by the light-independent enzyme car-
bonic anhydrase (CA). For OCS, the products are H2S and CO2,
and the process is thought to be irreversible. In contrast, photo-
synthesis of CO2 is a two-step process: diffusion into the leaves,
reversible hydration by CA, then light-dependent and irreversible
fixation by RuBisCo. Uptake of OCS does not require light but
responds to light indirectly, via stomatal opening. The OCS flux
is largely controlled by the series conductance of the stomata,
and the mesophyll (cell walls and membranes) for diffusion of
OCS from the air to the site of the CA reaction (4). Both of these
conductances tend to be correlated with the amount of RuBisCo,
and this probably explains the link between the light saturated
rates of CO2 and OCS uptake (4).

The ratio of the ecosystem deposition velocity of OCS (νOCS

(cm s-1)) to that of CO2 (νOCS:νCO2) showed strong dependence
on air temperature (Fig. 2(a)) and photosynthetically active radi-
ation (PAR) (Fig. 2(b)). We observed strong OCS uptake earlier
in the day, which persisted later in the day, than net CO2 uptake,
where uptake has to offset respiration. This behavior was pre-
dicted by Goldan et al [1988] (11), and is observed here for the
first time at the ecosystem scale (Fig. 2(c)). When temperatures
rose above 16°C, net FCO2 changed from positive (respiration
dominated) to negative (photosynthesis dominated). When the
canopy was fully developed and leaves in the canopy were most
active, uptake of both OCS and CO2 were strongest, peaking
at the highest temperatures, except for the anomalous period in
July when OCS was emitted by leaves but CO2 uptake continued
(Table 1).

The ratio of the ecosystem deposition velocity of OCS to
CO2 (νOCS:νCO2) can be compared to the Ecosystem Relative
Uptake (ERU) of OCS to CO2 (1, 13, 14). The ERU calcu-
lated for aircraft-profile derived νOCS:νCO2 (4.6 - 6.5 for the New
England area in July-August 2004 (13)), were both higher than
the νOCS:νCO2 ratio calculated for the flux tower (4.6 for 2011).
This difference is likely due to the larger non-vegetative sources
of CO2 (including anthropogenic) than OCS (marine, anthro-
pogenic) in the wider region not present within the tower foot-
print. During summer months when photosynthesis was greatest
(June-Sept, excl. July), the mean daily νOCS:νCO2 ratio was 2.6 ±
0.7 and the mean daytime (8am-5pm EST) νOCS:νCO2 ratio was
1.5 ± 0.3. The νOCS:νCO2 ratio increased from August through
October (Table 1).

In order to remove the influence of respiration on the
νOCS:νCO2 ratio we calculated the GPP of the forest normalized
by the ambient CO2 concentration (GPP* (cm s-1)). Using the
standard method described previously, GPP was estimated from
NEE by subtracting day-time ecosystem respiration (Reco), which
was extrapolated from the temperature dependence of night-
time NEE (NEE – Reco = GPP) (16). The νOCS:GPP* ratio
varied through the season, with a relatively high νOCS:GPP* in
May and October, (greater relative OCS uptake), decreasing to
a (negative) minimum in July (due to OCS emission) (Table 1).
The νOCS:GPP* ratio generally decreased with air temperature
(Fig. 2(b)). The mean νOCS:GPP* ratio for temperatures above
14°C (i.e. times of full canopy) was 1.4 ± 0.3. The flux-weighted
average for the year was 1.8 (Table 1). The mean νOCS:GPP*
ratio for higher temperatures includes both day and night values
and therefore is lower than the mean values obtained at higher
PAR values (Fig. 2(d)). νOCS:GPP* is comparable to the leaf-scale
νOCS:νCO2, also known as Leaf-scale Relative Uptake (LRU).

Recent work has identified a range of LRU values, including leaf-
chamber studies that have measured LRU values of 1 – 4 (26) and
1.3 - 2.3 (23) for a variety of tree species, and a field study of wheat
that measured LRU values of 0.9 - 1.9 for various light conditions
(8). In our study, νOCS:νGPP for times of air temperatures 14-
28°C and full light for the fully developed deciduous canopy
was 1.4 ± 0.3, a value within the range of observed LRU values.
However νOCS:GPP* was not constant during the day, with the
highest values at times of low light early and late in the day.
These variations in LRU values are somewhat more complex than
commonly assumed, but nevertheless can be well represented in
simulations with a carbon-cycle model (Simple Biosphere Model,
SiB) modified to include soil and canopy exchange of OCS (4)
(Methods).

Emission of OCS. Both light-dependent and light-
independent mechanisms contribute to the net OCS emissions
from the ecosystem observed during 2011. Net emission of
OCS was observed forest-wide (all wind directions), day and
night, under the high air temperature (>30°C) conditions in
late July and early August. Net OCS emission was also observed
in air from the deciduous-dominated wind sector in late June
and August, and during senescence in November. Figure 3
shows the diel cycle of OCS emission and CO2 uptake for 11
days at the end of July (July 20th – July 31st) (FOCS maximum
= +22.7 ± 9.4 pmol m-2 s-1). Heat stress may have been a
determining factor in the observed OCS emission, which was
strongly enhanced at air temperatures above 21°C (Fig. 3 (c)),
vapor pressure deficit (VPD) greater than 500 Pa (Fig. 3 (d))
and sap flow rates above 10 gH2O m-1 s-1 (not shown). In the
absence of OCS emission from the ecosystem, the expected
day-time net OCS uptake due to hydrolysis by CA (based on
June and August peak OCS ecosystem uptake) should be around
-30 pmol m-2 s-1, and hence the net emission of +20 pmol m-2 s-1

in late July could correspond to a maximum gross emission by
other mechanisms of 50 pmol m-2 s-1 at midday. A recent study
reported OCS emission from temperature-stressed soils and
senescent wheat at harvest-time (8, 18). However, the emission
observed here occurred at temperatures much lower than in the
wheat field study. Nighttime OCS emission peaked in August
(Fig 1(b)), when CO2 respiration was greatest, indicating a
light-independent emission mechanism, possibly associated with
decomposition.

Soil warming and nitrogen fertilization experiments have
been conducted in plots to the SW of the tower from 2006 to
present, including during 2011 (27, 28). These experiments use
ammonium nitrate (NH4NO3) to fertilize 12 plots of size 3 x 3
m. The fertilizer contains trace levels of sulfur (approximately
0.002% sulfur as SO4

-), which is equivalent to an application of
2.2 gS ha-1 yr-1, a less than 0.01% increase on the sulfur content
of the soil. The periods of OCS emissions were not found to
correlate with the application of the fertilizer. While we cannot
discount the possibility of an OCS artifact from the fertilizer,
we suspect that the small area involved and the low levels of
sulfur application are too small to contribute to the observed OCS
signal. Nitrogen fertilization experiments also found increased
OCS emission from soils (29) but we do not see a correlation with
soil temperature and the related increase in microbial activity. It
is possible that the sulfur present in the soils at Harvard Forest,
like the soils of the wheat fields in Oklahoma (8), is a source of
OCS through some unknown biophysical mechanism.

In early November OCS emission fluxes of ∼5pmol m-2 s-1

were observed briefly during the leaf senescence of the red oak
trees. It is possible this emission occurred through a process
similar to that observed during wheat senescence in Oklahoma
(8). High surface soil temperatures were also implicated as a
source of OCS in that study. However the soil temperature at
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Harvard Forest never reached the high temperatures observed
in Oklahoma as the canopy shielded the forest floor from direct
light, and there is no correlation of OCS emission with soil tem-
perature at Harvard Forest in November. Therefore, we propose
that the source of OCS may have been within the senescent
canopy or from freshly fallen leaves in the litter layer on the forest
floor.

OCS fluxes in the forest ecosystem. Ecosystem scale fluxes of
OCS have been adopted as a means to directly determine the pho-
tosynthetic uptake of carbon in the biosphere, independently of
soil and plant respiration (13, 14, 17). However, for this approach
to work as proposed, a number of requirements must be met,
many of which are not realized year-round at Harvard Forest.
These conditions include: 1) FOCS should be unidirectional (i.e.
no OCS emission). We observed net OCS emission at times of
ecosystem stress. 2) Night-time uptake of OCS should be negligible
or relatively constant and quantifiable. We found night-time uptake
varies throughout the year and accounts for ∼28% of the annual
OCS uptake. 3) The leaf-scale relative uptake (LRU) of OCS/CO2
for the ecosystem type should be known. Recent work has iden-
tified a range of LRU values, including leaf-chamber studies that
have measured LRU values of 1 – 4 (26) and 1.3 - 2.3 (23) for a
variety of tree species, and a field study of wheat that measured
LRU values of 0.9 - 1.9 for various light conditions (8). Our
study shows that the ecosystem νOCS:GPP*, which can be related to
LRU (Supporting Information), is not constant. Values vary within
the reported range of LRU values, provided that environmental
conditions are restricted to air temperatures between 14°C and 28°C
(Fig. 3(b)), PAR > 600 μE m-2 s-1 (Fig 3(d)), times of full canopy
and average soil moisture.

In view of these limitations, we tested the applicability of OCS
for the approximation of GPP (GPPOCS) during ideal conditions
(high illumination with moderate temperatures and soil moisture)
in September 2011 (LRU = νOCS:GPP* = 1.5 ± 0.5, Fig. 4).
The total daily sum of GPPOCS and GPPCO2 agree to within
3.5% for an LRU of 1.5, but the agreement is tightly coupled
to the range of LRU values used (8, 17). Changing the LRU
from 2 to 1 resulted in a 29% underestimation becoming a 36%
overestimation (Fig. 4). GPPOCS extends through more of the
day than GPPCO2, (earlier morning and later evening uptake),
highlighting the differing light dependent uptake pathways of
OCS and CO2 discussed earlier. We conclude that OCS fluxes are
related to GPP at times of greatest CO2 uptake, but this linkage
breaks down under limiting light and is complicated by other
uptake and production processes. Despite these complications,
the OCS fluxes calculated using the SiB model (4) generally
matched the observed fluxes well, and a more detailed modeling
study is planned.

Measurements of ecosystem OCS fluxes show promise in
providing a new means to estimate stomatal conductance on the
ecosystem scale. Stomatal conductance at our site was calculated
using the Ball-Berry equation in the SiB model and an explicit
representation of OCS fluxes (4) (Methods). We found a strong
linear correlation between the observed ecosystem OCS fluxes
and both the calculated stomatal conductance (r2 = 0.84) and
the simulated OCS fluxes (r2 = 0.63) for the eddy flux data
from August to October 2011. Previous laboratory studies had
proposed that OCS fluxes should scale directly with stomatal
conductance (30, 31), however this is the first evidence of this
relationship in a forest ecosystem, and nocturnal uptake of OCS
by the canopy provides strong evidence for incomplete stomatal
closure at night. Using the OCS flux as a means to measure
the stomatal conductance independently of the water vapor flux
would be a major advance in our capability to assess ecosystem
response to environmental forcing.

CONCLUSIONS AND IMPLICATIONS

Ecosystem fluxes of carbonyl sulfide (OCS) were measured
at Harvard Forest, MA throughout 2011. The overall net uptake
of OCS totaled -43.5 ± 0.5 gS ha-1 yr-1 in the forest ecosystem,
with 28% of uptake occurring at night, which was attributed
to both soil uptake and vegetative uptake through incompletely
closed stomata. The flux of OCS was found to be bidirectional,
with net emission during hotter conditions, and when vegetation
senesced. Air temperatures at Harvard Forest have warmed 1.5°C
over the past 50 years (32, 33) with increasingly large interannual
variability, and drought and heat stress events are expected to
increase in frequency (34). Our results suggest that the balance of
OCS uptake versus emission may change in terrestrial ecosystems
with an increasing number of events that induce stress in forests,
leading to changes in the global OCS budget. The leaf scale
relative uptake of OCS:CO2 was found to vary diurnally with
high values at dawn and dusk. The ecosystem OCS flux is not a
direct measure of photosynthesis, with many of the assumptions
in this simple method found to be invalid for different times
of our year-round observation. However, the addition of OCS
flux to the conventional suite of eddy covariance measurements
provided new information on stomatal behavior, canopy and soil
heterogeneity, soil processes and stress responses. Matching the
contrasting behavior of CO2 and OCS fluxes could present new
challenges for carbon cycle models at the ecosystem-scale, and
such models could be useful in interpreting the large variation in
OCS concentration observed in the atmosphere at regional- and
continental-scales.

METHODS�
A Tunable Infra-red Laser Direct Absorption Spectrometer (TILDAS, Aerodyne
Research Inc.) was used to measure atmospheric mixing ratios and derive
gradients and fluxes of carbonyl sulfide and water vapor at 2048.495 cm-1

and 2048.649 cm-1 respectively. Mixing ratios of OCS and H2O at a frequency
of 4 Hz for eddy covariance flux (eFOCS; August 2011 – December 2011) or 1 Hz
for gradient-flux (gFOCS; January 2011 – August 2011) were calculated using
TDL Wintel software (Aerodyne Research Inc.). The 1σ instrument precision
was typically 14 ppt at 4 Hz, averaging down to <1 ppt at 60 s. The sensor is
a further development of earlier instruments (35-38). More details about the
measurement technique and associated instrumental tests and the theory
behind the flux calculations are provided in Supplementary Information.
Tests were conducted to ensure continuity of measurement techniques. A
comparison of the OCS mixing ratios (TILDAS) observed at the same time as
NOAA flask samples is shown in Fig. S1.

Measurements were made at the Environmental Measurement Site
(EMS) at Harvard Forest, Petersham, MA (42.54oN, 72.17oW, elevation 340
m). The CO2 flux has been measured at this Long Term Ecological Research
(LTER) site since 1990 (39). Details about the site, environmental conditions
and ancillary measurements during the study period are described in the
Supplementary Information. Environmental conditions for the study were
typical of New England. Up to 75 cm of snow accumulated between January
and April in 2011. Air temperatures ranged from -28oC in January to 35oC
in July. At Harvard Forest, conifer trees are generally not active when air
temperatures are consistently below freezing (40). The CO2 flux from soil
respiration depends mainly on microbial activity and CO2 diffused through
the snowpack, with increased exchange from wind pumping. Microbial
activity continued through the winter as the soil temperatures were partially
shielded from the low air temperatures by the insulating snow pack (41) be-
fore the frost depth extended down to 10cm into the soil in early March. Bud
break was observed for deciduous species around May 5th and senescence
began late in October. Prolonged power loss resulted from damage to power
lines and damage to electronic equipment due to lightning on May 28th. As
no OCS fluxes were measured during the first two weeks of May and again
the first two weeks of June, the mean uptake for both May and June was
based only on measurements during the last half of each month. There was
less than 60 mm precipitation during June and July and this precipitation
was concentrated into four short events. Prolonged high temperatures (>
30°C) affected the site in mid-July, resulting in low soil moisture in the area.
Storms arrived in early August, bringing prolonged and heavy precipitation
and increasing soil moisture. Hurricane Irene on August 28th caused extensive
flooding in the region. October was unseasonably warm and leaves were still
on trees when a snow-storm on October 29th brought almost 50 cm of snow
to the area, again resulting in a brief power cut at the site and flooding in
the area on thaw. These large moisture events resulted in greater cumulative
precipitation for 2011 (1635 mm) than the 10-year average for the site (1226
mm), even though soils were anomalously dry in July.
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OCS fluxes derived during times of low turbulence (u* < 0.17 m s-1)
and during periods of precipitation were removed (16), leaving valid data
covering 34% of the 30 minute periods over the entire year, slightly less than
the 45% reported by Urbanski et al., [2007] as the mean valid CO2 flux data
points for the years 1992-2004. The valid data were uniformly distributed
over the year, and every hour for each composite month throughout the
year had valid OCS flux data, allowing the yearly flux of OCS to be calculated
for 2011 as -136 µmol m-2 yr-1, corresponding to a net uptake of -43.5 ± 0.5
gS (as OCS) ha-1 yr-1 or -16.3 ± 0.1 gC (as OCS) ha-1 yr-1 by the biosphere.
The total CO2 flux for the year, selected from times of valid OCS fluxes, was
-22.6 mol m-2 yr-1 or -2.7 MgC ha-1 yr-1 for 2011. This value is within the
observed range of -1.0 to -4.7 Mg C ha-1 yr-1 for the years 1992-2004 (42).
Overall the OCS fluxes had a greater relative uncertainty than fluxes of CO2,
reflecting a combination of both a less precise measurement of the OCS flux
(the gradient-flux calculated OCS flux has more uncertainty than the eddy
covariance calculated OCS flux) and more variability of the actual day-time
OCS fluxes.

The Simple Biosphere Model (SiB) version 3, adapted to include OCS,
was run using 2011 meteorology data from Harvard Forest. SiB is a process-
oriented enzyme-kinetic model that utilizes Michaelis-Menten kinetics fol-
lowing Farquhar et al. (1980) (43). SiB links stomatal conductance (both C3
and C4) to the energy budget (44, 45) and incorporates satellite-specified
phenology (46). Stomatal conductance, determined by the Ball-Berry equa-

tion (47), has a direct dependence on relative humidity and CO2 concen-
tration, and indirect dependence on soil water, temperature, light, and
humidity through the assimilation term. Both leaf and soil uptake of OCS are
explicitly represented in SiB (4) independently but in the same mechanistic
framework as CO2. The agreement between the observed and calculated OCS
outside of the net emission in July is excellent (Figure S6). Work is underway
to understand the differences observed in night-time data (Fig. S6 (a)) and
to include emission processes in SiB.
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SUPPLEMENTARY	MATERIAL	

S1	Technical	Details	

S1.1	INSTRUMENT	DESCRIPTION	

A	Tunable	Infra-red	Laser	Direct	Absorption	Spectrometer	(TILDAS,	Aerodyne	

Research	Inc.)	was	used	to	measure	atmospheric	mixing	ratios	and	derive	gradients	and	

fluxes	of	carbonyl	sulfide	and	water	vapor	at	2048.495	cm-1	and	2048.649	cm-1	respectively.	

There	were	no	CO2	absorption	lines	in	the	spectral	range	of	this	laser.	Mixing	ratios	of	OCS	and	

H2O	at	a	frequency	of	4	Hz	(eddy	flux)	or	1	Hz	(gradient-flux)	were	calculated	using	TDL	

Wintel	software	(Aerodyne	Research	Inc.).	A	background	spectrum	(30	s	duration)	was	

obtained	every	10	minutes,	and	interpolated	and	subtracted	from	the	sample	spectra,	in	

order	to	account	for	any	temporal	changes	in	instrument	response.	A	diaphragm	pump	was	

used	for	gradient-flux	measurements,	which	resulted	in	a	flow	rate	of	~3	slm	and	cell	

response	time	of	15	s	(90%	response	time).	The	first	60	s	at	each	level	were	discarded	to	

allow	for	equilibration	of	water	vapor.	The	1σ	instrumental	precision	was	5	pptv	(pmol	mol-

1)	in	1	s	averaging	down	to	0.9	pptv	at	100	s.	During	eddy-flux	measurements,	a	TriScroll	

600	slm	pump	resulted	in	a	flow	rate	of	12	slm	through	the	cell	and	a	response	time	of	1	s.	

The	1σ	instrument	precision	was	typically	14	pptv	at	4	Hz,	likewise	averaging	down	to	<1	

pptv	at	60	s.	The	sensor	is	a	further	development	of	previous	work	(1-5).	The	instrument	

was	an	early	version	of	the	TILDAS	instrument	using	a	210	m	absorption	cell	in	a	thermally	

isolated	plastic	box	used	outside	previously	at	Harvard	Forest	for	the	measurement	of	nitric	

acid	and	at	a	fen	in	New	Hampshire	for	the	measurement	of	methane	isotope	fluxes	(6).	

Further	instrumental	developments	lead	to	the	instrument	used	in	recent	studies	(7,	8).	

The	combined	water	vapor	dilution	and	pressure	broadening	correction	factor	was	

1.27	at	this	wavelength,	which,	if	not	corrected,	could	have	caused	an	underestimation	of	7	

pptv	(in	400	pptv)	OCS	for	14	ppth	(mmol	mol-1)	water	vapor.	This	correction	has	been	

applied	to	the	dataset.	A	NOAA-calibrated	cylinder	of	OCS	in	air	was	regularly	added	to	the	

gradient-flux	setup	(flow	rate	~3	slm	(standard	liters	per	minute),	however	the	high	flow	

rate	of	the	eddy	flux	method	(~12	slm	from	August	4th)	made	frequent	overblowing	the	

inlet	with	a	constant	flow	difficult	and	expensive.	Instead	the	regular	additions	of	OCS-free	

air	for	the	null	spectra	were	used	to	determine	the	temporal	variations	in	the	instrument	

stability,	with	less	frequent	addition	of	the	calibration	gas.	These	calibrations	were	

independent	of	the	NOAA	flask	samples	described	below.		
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	 Figure	S1	shows	a	time	series	of	OCS	measured	by	the	TILDAS	(30	minute	average)	

and	OCS	measured	in	weekly/fortnightly	paired	flask	samples	analysed	by	gas	

chromatography	with	mass	spectrometric	detection	at	NOAA	(update	of	measurements	

from	Montzka	et	al.,	[2007]	(9)).	Most	flask	samples	were	collected	at	mid-day	over	a	few	

minutes,	after	extensive	flushing.	The	TILDAS	measurements	show	short-term	variability,	

often	greatest	outside	of	mid-day,	that	cannot	be	observed	by	the	flasks.	However,	when	the	

TILDAS	data	is	averaged	for	the	time	periods	around	the	flask	sampling	time	(grey	circles	in	

Fig.	S1),	both	measurements	track	well.		

	

S1.2	CALCULATION	OF	OCS	FLUXES	

Two	methods	were	used	to	calculate	the	canopy	scale	flux	of	OCS	(FOCS)	at	Harvard	

Forest.	The	gradient	–	flux	method	was	used	between	January	2011	and	early	August	2011,	

followed	by	the	eddy	covariance	method,	which	continued	until	the	end	of	the	year.	

	

S1.2.1	Gradient	–	Flux	Method	

The	micrometeorological	gradient	–	flux	method,	also	known	as	the	modified	Bowen	

ratio	method	(10),	is	based	on	the	assumption	of	trace-gas	similarity	between	OCS	and,	in	

our	measurements,	H2O	to	calculate	the	flux	of	OCS,	gFOCS	(pmol	m-2	s-1):		 						

gFOCS	=	FH2O			gOCS	/	gH2O		 	 	 (S1)	

where	gOCS	(pmol	mol-1	m-1),	gH2O	(mmol	mol-1	m-1),	are	the	vertical	concentration	

gradients	of	OCS	and	H2O	respectively	measured	simultaneously	by	the	TILDAS	at	two	

heights	(29.5	m	and	24.1	m):	

gX	=	[X]29.5m	–	[X]24.1m	/	(29.5	–	24.1)		 	 		(S2)	

and	the	water	vapor	flux	FH2O	is	measured	directly	by	eddy	covariance	at	the	EMS	tower	

using	a	infra-red	gas	analyzer	(IRGA,	Li-COR	6262	(11)).	The	nominal	TILDAS	water	vapor	

mixing	ratios	were	22%	higher	than	the	calibrated	water	vapor	mixing	ratios	measured	by	

the	IRGA.	The	water	vapor	observed	by	the	TILDAS	was	based	on	spectroscopic	parameters,	

and	was	not	externally	calibrated,	so	this	correction	was	applied	to	the	TILDAS	water	vapor	

mixing	ratios	prior	to	calculation	of	the	gradient	–	flux.	The	gradient	flux	method	has	been	

used	successfully	at	Harvard	Forest	previously	to	measure	fluxes	of	hydrogen	

{Meredith:2014hn},	non	methane	hydrocarbons	(NMHCs){Goldstein:1995vu,	

Goldstein:1996vi}	and	isoprene	{Goldstein:1998wv}.	In	each	of	these	studies,	the	use	

of	CO2,	H2O	and	air	temperature	produced	similar	fluxes	throughout	the	year	with	
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varying	precision	and	accuracy.	These	methods	were	further	validated	when	McKinney	

et	al	(2010)	found	similar	fluxes	of	isoprene	using	disjunct	eddy	covariance	method	

{McKinney:2011jt}.	Particularly	relevant	to	the	study	here,	Meredith	et	al.	(2014)	

found	that	the	gradient	–	flux	method	using	either	H2O	or	CO2	was	valid	throughout	

2011	{Meredith:2014hn}.		
The	OCS	flux	could	not	be	calculated	for	23%	of	the	OCS	measurements	made	during	

the	May-August	2011	sampling	period.	This	was	due	to	a	combination	of	rain	events	(when	

no	water	vapor	flux	was	calculated)	and	unrealistic	water	vapor	mixing	ratios	(ΔH2O	

outside	the	95%	quantiles	of	the	total	data),	which	resulted	in	equally	unrealistic	OCS	

fluxes.	Figure	S2	shows	the	diel	cycle	of	the	measurements	of	(a)	OCS	gradient	and	(b)	H2O	

gradient,	(c)	the	H2O	flux	measured	by	eddy	flux,	and	(d)	the	calculated	OCS	flux	using	the	

gradient	–	flux	method	for	June	14th,	2011.	The	CO2	flux	measured	by	eddy	covariance	(e)	is	

included	for	comparison.	Negative	fluxes	indicate	loss	from	the	atmosphere	and	uptake	by	

the	biosphere.	

The	overall	uncertainty	of	the	gradient	–	flux	method	was	calculated	for	each	point	

as	the	root-mean-square	of	the	95%	confidence	intervals	of	the	gradient	measurements	

(gOCS	and	gH2O)	and	the	mean	error	of	the	eddy	covariance	calculated	water	vapor	(15%	

(11)).	As	the	instrument	is	optimized	to	OCS	detection,	the	error	in	the	water	vapor	gradient	

measurement,	combined	with	the	standard	deviation	of	the	water	vapor	mixing	ratio	within	

a	30-minute	period,	dominated	the	overall	uncertainty.	For	the	June-July	period,	the	

uncertainty	in	absolute	fluxes	ranged	from	0.05	pmol	m-2	s-1	to	20	pmol	m-2	s-1	on	rare	

occasions	with	a	median	of	0.43	pmol	m-2	s-1.	For	example,	as	shown	in	Figure	S2,	this	

uncertainty	reaches	a	maximum	of	5.7	pmol	m-2	s-1	for	an	OCS	flux	of	1.1	pmol	m-2	s-1	on	

June	14th	2011.		

For	the	gradient-flux	method,	ambient	air	was	alternatively	sampled	from	the	tower	

heights	of	29.5	m	and	24.1	m	using	40m	of	3/8”	(OD;	0.95	cm)	Synflex	®	tubing.	Teflon	

particle	filters	(pore	size	5	µm)	at	the	inlet	of	each	sampling	line	were	changed	every	2-4	

weeks	to	prevent	artificial	production	of	OCS	on	chemically	aged	or	dirty	surfaces	(See	

Section	S1.2.4	below).	These	filters	resulted	in	a	pressure	drop	through	the	tubing,	which	

reduced	the	effects	of	adsorption/desorption	on	the	tubing.	The	black	synflex	tubing	also	

reduced	any	sunlight	affects	on	the	sample.		The	air	in	each	sampling	tube	was	tested	after	

each	background	(10	or	30	minute	interval)	to	ensure	no	in	situ	production	of	OCS	(short-

lived	increase	in	OCS).	The	materials	in	the	instrument	were	carefully	chosen	to	minimize	
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any	artifacts	during	sampling:	clean	Teflon	filters,	Synflex	tubing,	stainless	steel	solenoid	

valves	and	the	glass	sampling	cell	were	not	found	to	scavenge	or	emit	OCS.	No	pump	was	

used	upstream	of	sampling	to	prevent	contamination	of	the	sample	gas.	Some	initial	

measurements	were	made	at	25	m	and	1	m	during	the	winter	2010-2011.	The	calculated	

fluxes	for	this	winter	2011	period	agreed	with	eddy	fluxes	for	winter	2012,	so	these	early	

data	have	been	included	in	the	seasonal	cycle	of	FOCS.	For	eddy	covariance	flux	

measurements,	only	the	29.5	m	inlet	was	used.	

	

S1.2.2	Eddy	Covariance	Method	

The	eddy	covariance	fluxes	of	OCS	(eFOCS)	and	H2O	(eFH2O)	were	calculated	from	high	

frequency	(4Hz)	measurements	of	OCS	and	H2O	made	by	the	TILDAS	at	29.5	m.	After	

subtracting	a	block	average	for	the	interval,	the	covariance	of	the	residual	of	the	vertical	

wind	velocity	(w’)	and	concentration	(OCS’	or	H2O’)	for	each	30	minute	interval	was	

calculated	as	in	Goulden	et	al,.	[1996]	(13),	e.g.	

	 eFOCS	=	w’OCS’	;		 eFH2O	=	w’H2O’		(S3)		

The	instrument	synchronization	time	lag	was	determined	by	maximizing	the	

correlation	between	w’	and	H2O’.	This	lag	also	accounted	for	differences	in	computer	clock	

times	between	the	sonic	and	OCS	data	systems,	which	increased	gradually	after	each	

synchronization	reset	(daily).	The	flux	is	rotated	to	the	plane	where	the	mean	vertical	wind	

is	zero	(14).	The	calibrated	IRGA	water	vapor	fluxes	were	used	for	all	analysis.	Accurate	

fluxes	can	be	calculated	even	though	high	frequency	noise	limits	the	precision	of	the	OCS	

concentration	at	short	times,	because	the	noise	is	not	correlated	with	vertical	wind	velocity.	

The	error	in	the	eddy	covariance	was	determined	by	calculating	the	root	mean	squared	

combination	of	observed	covariance	for	periods	±	25	s	from	the	lag	time.	This	resulted	in	a	

mean	standard	error	in	the	eddy	covariance	calculated	OCS	flux	of	14%.	

	

S1.2.3	Gradient-Flux	and	Eddy	covariance	comparison	

Both	gradient	measurements	and	eddy	flux	measurements	were	made	for	a	limited	

time	period:	6	–	12	August	2011,	when	additional	measurements	were	made	at	a	height	of	

24.1	m	for	120s	every	30	minutes.	This	shorter	sampling	period	at	24.1	m	resulted	in	a	

greater	error	in	the	gradient-flux	(gFOCS)	for	this	period	(12).	In	a	comparison	of	the	two	

methods,	the	composite	diel	cycle	(2	hourly	bins)	of	gFOCS	(Figure	S3	black	circles)	and	eFOCS	

(Figure	S3	red	boxes)	for	periods	of	common	measurements	showed	similar	behavior	but	

€ 

FOCS = w'OCS'
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with	slightly	more	variance	in	gFOCS,	as	expected.	The	overall	trend	through	the	composite	

day	compares	well	for	both	methods,	with	no	statistical	difference	between	the	daily	mean	

flux	calculated	by	either	method:	daily	mean	OCS	uptake	of	-8.6	(	±	6.2;	95%	CI)	pmol	m-2	s-1	

for	gFOCS	and	-9.6	(±	4.4)	pmol	m-2	s-1	eFOCS.	The	gradient-flux	of	OCS	underestimates	the	

total	daily	flux	(gFOCS	=	-174	pmol	m-2	s-1)	by	7%	compared	to	the	eddy	flux	(eFOCS		=	-187	

pmol	m-2	s-1).	The	signs	and	the	diel	patterns	of	the	flux	are	consistent	for	both	methods,	

except	during	transition	periods	near	sunrise	and	sunset	when	fluxes,	especially	the	water	

vapor	flux	used	to	calculate	gFOCS,	are	small	and	neither	method	is	reliable.		

	

S1.2.5	OCS	Storage	

The	actual	net	uptake	or	emission	of	a	trace	gas	by	the	ecosystem	is	the	observed	

vertical	flux	plus	any	accumulation	(or	depletion)	in	the	canopy	space	below	the	flux	sensor	

(storage	term).	For	CO2,	the	storage	term	is	significant	compared	to	the	vertical	flux,	

especially	around	dawn	and	dusk	transitions	-	disregarding	non-ideal	conditions	with	

significant	horizontal	advective	fluxes.	Although	the	storage	term	sums	to	nearly	0	over	a	

daily	interval,	it	must	be	included	in	order	to	interpret	net	CO2	exchange	on	sub-daily	

intervals.	During	summer	2012	(and	when	large	CO2	storage	values	were	calculated),	

storage	of	OCS	calculated	from	OCS	profile	measurements	were	negligible.	The	physical	

process	that	leads	to	storage	should	not	change	from	year	to	year	so	the	results	from	2012	

should	be	applicable	to	2011.	Therefore	storage	has	not	been	included	been	ignored	in	the	

OCS	flux	results	that	we	report	here.	

	

S1.3	ARTIFICIAL	OCS	PRODUCTION		

Heterogeneous	production	of	OCS	on	the	surface	of	the	contaminated	Teflon	filters	

was	observed	over	5	days	after	sampling	an	anthropogenically-influenced	airmass	in	

February	2011,	as	unsafe	climbing	conditions	prevented	immediate	replacement	of	the	

filter,	which	had	been	in	place	since	late	December.	This	OCS	production	was	observed	as	

large,	short-lived	pulses	of	OCS	(up	to	800	pptv)	when	sampling	the	line	(and	contaminated	

filter)	after	zero	air	background	measurements.	However,	no	evidence	of	OCS	production	

from	filter	contamination	was	observed	during	the	summer	emission	period	described	in	

the	main	text.	Airmass	trajectories	for	this	February	event	indicate	that	the	air	was	

influenced	by	high	sulfur	emission	from	the	copper	and	nickel	smelters	in	Sudbury,	Ontario,	

Canada,	and	SO2	mixing	ratios	of	greater	than	60	ppbv	were	observed	in	the	same	airmass	
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at	a	site	60	miles	east	of	Harvard	Forest	(Aerodyne	Research,	Billerica,	MA)	on	the	same	

day.	OCS	dissolves,	but	is	not	hydrolyzed,	in	acidic	water.	Belviso	and	co-workers	measured	

supersaturated	OCS	in	acidic	rainwaters	in	France	and	suggested	an	in	situ	production	of	

OCS	from	the	acid	catalyzed	reaction	of	thiocyanate	salts	(15).	No	further	studies	have	

confirmed	this	suggested	mechanism.	However,	the	emission	of	high	mixing	ratios	of	OCS	

from	teflon	filters	could	be	related	to	a	similar	production	mechanism,	as	OCS	production	

continued	for	a	number	of	days	and	was	increased	in	warmer,	and	slightly	more	humid,	

daylight	conditions.	There	is	limited	literature	on	the	heterogeneous	production	of	OCS	and	

potential	mechanisms	should	be	investigated	in	future	studies.	Data	with	contaminated	

filter	production	of	OCS	have	been	removed	from	further	analysis	and	from	Figure	S1.	

Materials	for	the	instrumental	setup	were	carefully	chosen	to	ensure	no	artificial	

production	of	OCS	in	the	system.	Testing	showed	that	OCS	was	produced	by	rubber	

diaphragms	in	pumps	and	resulted	in	strong	OCS	production	(pulses	up	to	24	ppb)	in	re-

circulating	soil	chambers	at	Harvard	Forest.	No	soil	chamber	data	was	used	in	the	analysis	

presented	here.	Neoprene	and	plastic	tubing,	which	are	often	used	in	soil	chambers,	were	

particularly	strong	producers	of	OCS.	Clean	Synflex®	and	Teflon	tubing	were	not	found	to	

produce	observable	OCS.	While	steps	have	been	taken	to	minimize	the	impact	of	material	

contamination	and	to	remove	any	data	influences	by	atmospheric	contamination,	it	is	

possible	that	the	large	OCS	emission	observed	in	July	may	be	the	result	of	some	unknown	

physical	production	mechanism.		

In	a	wheat	field	Maseyk	et	al	[2014]	observed	OCS	emission	of	217	µgS	m-2	over	the	

final	10	days	of	measurements	(from	a	total	of	657	µgS	m-2	over	7	weeks).	We	estimate	a	

comparable	OCS	emission	of	207	µgS	m-2	over	the	10	days	of	observed	net	OCS	emission	at	

Harvard	Forest.	The	metabolism	of	sulfur	containing	amino	acids,	which	increases	with	

temperature	and	plant	stress,	may	lead	to	OCS	production	(Maseyk	et	al	2014)	in	a	similar	

manner	to	CO	(Conrad	and	Seiler	(1985))	and	CH4	production	(Nisbet	et	al	(2008))	from	

thermal	degradation.	

	 Soil	warming	and	nitrogen	fertilization	experiments	have	been	

conducted	in	plots	to	the	SW	of	the	tower	from	2006	to	present,	including	during	

2011	{Contosta:2011dh,	Contosta:2012kr}.	These	experiments	use	ammonium	

nitrate	(NH4NO3)	to	fertilize	12	plots	of	size	3	x	3	m.	The	fertilizer	contains	trace	

levels	of	sulfur	(approximately	0.002%	sulfur	as	SO4-),	which	is	equivalent	to	an	

application	of	2.2	gS	ha-1	yr-1,	a	less	than	0.01%	increase	on	the	sulfur	content	of	the	
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soil.	The	periods	of	OCS	emissions	were	not	found	to	correlate	with	the	application	

of	the	fertilizer.	While	we	cannot	discount	the	possibility	of	an	OCS	artifact	from	the	

fertilizer,	we	suspect	that	the	small	area	involved	and	the	low	levels	of	sulfur	

application	are	too	small	to	contribute	to	the	observed	OCS	signal.	Nitrogen	

fertilization	experiments	also	found	increased	OCS	emission	from	soils	

{Mellillo:1989ud}	but	we	do	not	see	a	correlation	with	soil	temperature	and	the	

related	increase	in	microbial	activity.	It	is	possible	that	the	sulfur	present	in	the	soils	

at	Harvard	Forest,	like	the	soils	of	the	wheat	fields	in	Oklahoma	{Maseyk:2014jl},	is	

a	source	of	OCS	through	some	unknown	biophysical	mechanism.	
S2	Site	Description	and	Ancillary	Measurements	

S2.1	SITE	DESCRIPTION	

Measurements	were	made	at	the	Environmental	Measurement	Site	(EMS)	at	

Harvard	Forest,	Petersham,	MA	(42.54oN,	72.17oW,	elevation	340	m).	The	CO2	flux	into	and	

out	of	the	forest	has	been	measured	at	this	Long	Term	Ecological	Research	(LTER)	site	since	

1990	(11).	The	30	m	meteorology	tower	extends	about	5	m	over	the	forest	canopy	and	is	

located	on	moderately	hilly	terrain	surrounded	by	several	kilometers	of	relatively	

undisturbed	forest;	approximately	80%	of	the	turbulent	fluxes	are	produced	within	0.7-1	

km	of	the	tower	(16).	The	basal	area	(m2	ha-1)	of	various	tree	species	within	the	footprint	of	

the	tower	is	tracked	on	plots	established	in	1993	(17).	In	2011,	the	southwest	sector	was	

dominated	by	deciduous	species	red	oak	(20.0%	basal	area)	and	red	maple	(11.8%)	with	

some	black	oak	(2.6%)	and	ash	(2.1%).	The	northwest	sector	was	more	mixed	with	red	oak	

(17.3%)	and	hemlock	(13.2%)	dominating	and	some	red	maple	(9%),	red	pine	(7.3%)	and	

white	pine	(5.4%).	A	dried	up	pond,	that	is	now	an	area	of	new	tree	growth,	was	also	

located	in	the	northwest	sector.	

Soils	at	Harvard	Forest	are	acidic	and	originate	from	sandy	loam	glacial	till.	The	

diversity	and	richness	of	the	soil	microbial	community	is	somewhat	reduced	at	low	soil	pH	

(18)	but	the	soil	at	Harvard	Forest	contains	representatives	of	the	phyla	typical	in	most	

soils	(Blanchard,	personal	communication),	many	of	which	can	encode	for	one	or	more	

carbonic	anhydrase	enzymes	(19).	

	

S2.2	CO2	FLUX	MEASUREMENTS	

The	CO2	flux	at	the	EMS	tower	was	measured	by	eddy	covariance	as	described	

extensively	in	previous	work	(11,	13,	17,	20).	The	CO2	flux	term	accounts	for	storage	of	CO2	
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within	the	canopy	as	determined	from	gradient	measurements	of	the	CO2	concentration	

(21).	The	daytime	respiration	of	CO2	is	projected	from	the	observed	temperature	

dependence	of	respiration	at	night.	To	estimate	gross	primary	productivity	(GPP)	from	the	

measured	CO2	flux,	we	use	the	difference	between	the	daytime	CO2	flux	and	the	projected	

daytime	respiration	(13).	

The	Hemlock	Tower	is	another	flux	tower	at	Harvard	Forest	located	500m	away	

from	the	EMS	tower	in	a	mature	hemlock	stand.	The	CO2	uptake	by	conifer	species	in	2011	

was	found	to	be	greatest	in	April,	May	and	June	(2.1	-	2.4	g-C	m-2	day-1) before	being	

drastically	reduced	in	July	(0.5	g-C	m-2	day-1),	recovering	in	August	(1.5	g-C	m-2	day-1) and	
reducing	in	the	fall	(0.4	–	0.6	g-C	m-2	day-1; September	–	October).	The	conifer	uptake	flux	

increased	again	in	November	(1.1	g-C	m-2	day-1)	with	higher	air	temperatures	before	

essentially	stopping	in	December	(0.008	g-C	m-2	day-1).		

	

S2.3	SAP	FLOW	MEASUREMENTS	

Ecosystem	scale	flux	observations	cannot	distinguish	the	canopy	flux	from	the	soil	

flux,	since	both	sinks	are	located	beneath	the	flux	measurement	point.	Measurements	of	sap	

flow	through	trees	(i.e.	water	uptake	by	trees)	provide	understanding	of	whole-tree	

transpiration	with	high	temporal	resolution	when	measured	continuously	throughout	the	

growing	season.	Because	both	transpiration	and	photosynthesis	are	controlled	by	stomatal	

conductance,	measurements	of	sap	flow	and	eddy	flux	can	be	combined	to	understand	

patterns	of	canopy	carbon	uptake	(22).	We	measured	rates	of	sap	flow	(23)	in	the	dominant	

(by	mass)	deciduous	tree	species	(Quercus	rubra	(northern	red	oak)	and	Acer	rubrum	(red	

maple))	in	a	nearby	site	at	Harvard	Forest	during	a	period	that	overlapped	with	OCS	flux	

measurements.	These	measurements	provide	an	indication	of	tree	activity	that	has	been	

used	to	understand	the	observed	OCS	(and	CO2)	fluxes.	Two	sensors	were	installed	at	breast	

height	on	six	individual	red	oak	red	maple	trees	(24	sensors	total).		

Sap	flow	rates	in	both	species	began	to	increase	on	May	19th,	just	after	bud	break.	

Senescence	began	around	late	October,	with	water	uptake	by	the	red	oak	continuing	until	

about	November	13th.	Elevated	sap	flow	was	generally	observed	before	midnight	

throughout	the	growing	season	before	reducing	to	minimal	levels	in	the	early	hours	of	the	

morning.	Figure	S5	shows	the	summer	sap	flow	rates	staying	high	into	the	late	afternoon	

after	both	PAR	and	the	water	vapor	flux	began	to	decrease.	The	bulk	tree	activity,	as	
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observed	by	sap	flow	rates,	showed	that	the	red	oaks	continued	to	be	active	for	up	to	5	

hours	into	the	night	before	reaching	zero.		

	

	

S3.	Additional	Methodology	

S3.1	OCS:CO2	ATMOSPHERIC	RELATIVE	UPTAKE	(ARU):	

The	impact	of	vegetative	uptake	on	ambient	OCS	mixing	ratios	can	be	explored	by	

looking	at	a	ratio	of	OCS	to	CO2.		The	Atmospheric	Relative	Uptake	(ARU)	is	the	seasonal	

change	in	the	OCS:CO2	uptake	ratio	(9):	

	 	 	 	
(S4)

	
	

where	[X]max-min	is	the	difference	between	spring	maximum	and	autumn	minimum	ambient	

mixing	ratios	of	OCS	and	CO2	normalized	by	their	annual	mean.	We	calculate	an	ARU	of	8.5	

for	2011,	which	is	similar	to	the	ARU	(~8	±	2)	calculated	from	a	multi-annual	analysis	of	

flask	data	collected	at	Harvard	Forest	for	2000-2005	(9).	
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Figure	Legends	

Figure	S1:	Comparison	of	OCS	(pptv;	pmol	mol-1)	measured	by	the	TILDAS	(30	minute	
average	(black)	with	1σ	standard	deviations	shown	in	grey),	NOAA	flask	pair	means	(red	
points,	1σ 	standard	deviations	shown	as	red	lines	error	bars	(barely	visible))	and	co-
sampled	TILDAS	OCS	(3	hour	average	at	the	time	of	the	flask	sample	(grey	circle)).	The	
flasks	were	sampled	weekly	followed	by	analysis	by	gas	chromatography	mass	
spectrometry	(GC-MS)	in	Boulder	-	as	part	of	the	NOAA	flask	sample	network	(9).	
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Figure	S2:	Components	of	gradient-flux	calculated	OCS	flux	for	June	14,	2011:	(a)	gOCS:	OCS	
gradient	(black,	pptv	m-1),	confident	intervals	of	the	OCS	gradient	(grey	bars,	which	are	
barely	visible)	(b)	gH2O:	H2O	gradient	(dark	blue,	pptv	m-1),	confident	intervals	of	H2O	
gradient	(grey	bars)(c)	FH2O:	H2O	flux	(blue,	mmol	m-2	s-1),	15%	error	on	eddy	covariance	
measurements	(grey	bars),	(d)	gFOCS:	OCS	gradient	–	flux	(pmol	m-2	s-1),	2	hour	average	
(black),	30	minute	gFOCS	(grey	points	with	standard	error	as	grey	bars),	(e)	FCO2:	CO2	flux	
(as	NEE	including	storage	contribution)	(µmol	m-2	s-1),	30	minute	FCO2	(small	light	green	
points),	15%	error	on	eddy	covariance	measurements	(green	bars),	2	hours	mean	(dark	
green	points).	
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Figure	S3:	Composite	diel	cycle	of	the	gradient-flux	OCS	(gFOCS,	black	points)	and	eddy	
covariance	OCS	flux	(eFOCS,	red	squares)	for	coincident	data	in	2	hourly	time	bins	for	6	–	12	
August	2011.	The	error	bars	indicate	the	95%	confidence	intervals	of	the	data	within	the	
composite	two-hour	period.		
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Figure	S4:	Diurnal	composite	of	OCS	(black)	and	CO2	(green)	fluxes	(Eastern	Standard	
Time)	for	the	summer	months	of	2011:	(a1)	June,	(b1)	August,	(c1)	September,	with	times	
of	low	turbulence	(u*	<	0.17	m	s-1)	removed.	95%	confidence	intervals	for	each	species	are	
shown	as	black	error	bars.	The	95%	confidence	intervals	for	CO2	are	barely	visible.	Both	
columns	show	PAR	(solid	orange	line;	10-8E	m-2	s-1)	on	two	different	scales.	The	right	
column	(a2,	b2,	c2)	shows	the	sap	flow	rates	for	oak	(brown	triangles;	gH2O	m-2	s-1),	the	
vapor	pressure	deficit	(magenta	dashed	line;	Pa),	the	water	vapor	flux	(blue/navy	circles;	5	
mmol	m-2	s-1	(multiplied	by	5	for	graphing)).		
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Figure	S5:	The	OCS	(black	circles;	pmol	m-2	s-1)	flux,	CO2	flux	(green	square;	µmol	m-2	s-1)	
and	the	air	temperature	(blue	diamonds,	°C)	for	given	surface	soil	temperatures	in	
December	2011.	The	data	is	partitioned	to	have	equal	numbers	of	data	points	for	each	
temperature	shown.	
	

	
	

	

Figure	S6:	Monthly	mean	observed	OCS	fluxes	(black;	pmol	m-2	s-1)	and	SiB	simulated	OCS	
fluxes	(red;	pmol	m-2	s-1)	were	compared	for	(a)	night	and	(b)	daytime	(Par	>	600	µE	m-2	s-
1).		This	version	of	SiB	includes	explicit	representation	of	OCS	uptake	by	soils	and	
vegetation,	but	does	not	yet	simulate	the	processes	responsible	for	production	of	OCS	in	the	
ecosystem.	Work	is	underway	to	consider	the	night-time	OCS	uptake	and	OCS	emission	
processes.	
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