1,645 research outputs found
Tissue sampling methods and standards for vertebrate genomics
The recent rise in speed and efficiency of new sequencing technologies have facilitated high-throughput sequencing, assembly and analyses of genomes, advancing ongoing efforts to analyze genetic sequences across major vertebrate groups. Standardized procedures in acquiring high quality DNA and RNA and establishing cell lines from target species will facilitate these initiatives. We provide a legal and methodological guide according to four standards of acquiring and storing tissue for the Genome 10K Project and similar initiatives as follows: four-star (banked tissue/cell cultures, RNA from multiple types of tissue for transcriptomes, and sufficient flash-frozen tissue for 1 mg of DNA, all from a single individual); three-star (RNA as above and frozen tissue for 1 mg of DNA); two-star (frozen tissue for at least 700 μg of DNA); and one-star (ethanol-preserved tissue for 700 μg of DNA or less of mixed quality). At a minimum, all tissues collected for the Genome 10K and other genomic projects should consider each species’ natural history and follow institutional and legal requirements. Associated documentation should detail as much information as possible about provenance to ensure representative sampling and subsequent sequencing. Hopefully, the procedures outlined here will not only encourage success in the Genome 10K Project but also inspire the adaptation of standards by other genomic projects, including those involving other biota
Tissue Sampling Methods and Standards for Vertebrate Genomics
The recent rise in speed and efficiency of new sequencing technologies have facilitated high-throughput sequencing, assembly and analyses of genomes, advancing ongoing efforts to analyze genetic sequences across major vertebrate groups. Standardized procedures in acquiring high quality DNA and RNA and establishing cell lines from target species will facilitate these initiatives. We provide a legal and methodological guide according to four standards of acquiring and storing tissue for the Genome 10K Project and similar initiatives as follows: four-star (banked tissue/cell cultures, RNA from multiple types of tissue for transcriptomes, and sufficient flash-frozen tissue for 1 mg of DNA, all from a single individual);three-star (RNA as above and frozen tissue for 1 mg of DNA); two-star (frozen tissue for at least 700 μg of DNA); and one-star (ethanol-preserved tissue for 700 μg of DNA or less of mixed quality). At a minimum, all tissues collected for the Genome 10K and other genomic projects should consider each species’ natural history and follow institutional and legal requirements. Associated documentation should detail as much information as possible about provenance to ensure representative sampling and subsequent sequencing. Hopefully, the procedures outlined here will not only encourage success in the Genome 10K Project but also inspire the adaptation of standards by other genomic projects, including those involving other biota
Recommended from our members
BioTIME: A database of biodiversity time series for the Anthropocene.
MotivationThe BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community-led open-source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene.Main types of variables includedThe database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of 2 years, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology and contextual information about each record.Spatial location and grainBioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km2 (158 cm2) to 100 km2 (1,000,000,000,000 cm2).Time period and grainBioTIME records span from 1874 to 2016. The minimal temporal grain across all datasets in BioTIME is a year.Major taxa and level of measurementBioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton and terrestrial invertebrates to small and large vertebrates.Software format.csv and .SQL
The Proteome of Biologically Active Membrane Vesicles from Piscirickettsia salmonis LF-89 Type Strain Identifies Plasmid-Encoded Putative Toxins
Piscirickettsia salmonis is the predominant bacterial pathogen affecting the Chilean salmonid industry. This bacterium is the etiological agent of piscirickettsiosis, a significant fish disease. Membrane vesicles (MVs) released by P. salmonis deliver several virulence factors to host cells. To improve on existing knowledge for the pathogenicity-associated functions of P. salmonis MVs, we studied the proteome of purified MVs from the P. salmonis LF-89 type strain using multidimensional protein identification technology. Initially, the cytotoxicity of different MV concentration purified from P. salmonis LF-89 was confirmed in an in vivo adult zebrafish infection model. The cumulative mortality of zebrafish injected with MVs showed a dose-dependent pattern. Analyses identified 452 proteins of different subcellular origins; most of them were associated with the cytoplasmic compartment and were mainly related to key functions for pathogen survival. Interestingly, previously unidentified putative virulence-related proteins were identified in P. salmonis MVs, such as outer membrane porin F and hemolysin. Additionally, five amino acid sequences corresponding to the Bordetella pertussis toxin subunit 1 and two amino acid sequences corresponding to the heat-labile enterotoxin alpha chain of Escherichia coli were located in the P. salmonis MV proteome. Curiously, these putative toxins were located in a plasmid region of P. salmonis LF-89. Based on the identified proteins, we propose that the protein composition of P. salmonis LF-89 MVs could reflect total protein characteristics of this P. salmonis type strain
Why sequence all eukaryotes?
Life on Earth has evolved from initial simplicity to the astounding complexity we experience today. Bacteria and archaea have largely excelled in metabolic diversification, but eukaryotes additionally display abundant morphological innovation. How have these innovations come about and what constraints are there on the origins of novelty and the continuing maintenance of biodiversity on Earth? The history of life and the code for the working parts of cells and systems are written in the genome. The Earth BioGenome Project has proposed that the genomes of all extant, named eukaryotes-about 2 million species-should be sequenced to high quality to produce a digital library of life on Earth, beginning with strategic phylogenetic, ecological, and high-impact priorities. Here we discuss why we should sequence all eukaryotic species, not just a representative few scattered across the many branches of the tree of life. We suggest that many questions of evolutionary and ecological significance will only be addressable when whole-genome data representing divergences at all of the branchings in the tree of life or all species in natural ecosystems are available. We envisage that a genomic tree of life will foster understanding of the ongoing processes of speciation, adaptation, and organismal dependencies within entire ecosystems. These explorations will resolve long-standing problems in phylogenetics, evolution, ecology, conservation, agriculture, bioindustry, and medicine
Hot, rocky and warm, puffy super-Earths orbiting TOI-402 (HD 15337)
Context: The Transiting Exoplanet Survey Satellite (TESS) is revolutionising the search for planets orbiting bright and nearby stars. In sectors 3 and 4, TESS observed TOI-402 (TIC-120896927), a bright V = 9.1 K1 dwarf also known as HD 15337, and found two transiting signals with periods of 4.76 and 17.18 days and radii of 1.90 and 2.21 R⊕, respectively. This star was observed prior to the TESS detection as part of the radial-velocity (RV) search for planets using the HARPS spectrometer, and 85 precise RV measurements were obtained before the launch of TESS over a period of 14 yr.
Aims: In this paper, we analyse the HARPS RV measurements in hand to confirm the planetary nature of these two signals.
Methods: HD 15337 happens to present a stellar activity level similar to the Sun, with a magnetic cycle of similar amplitude and RV measurements that are affected by stellar activity. By modelling this stellar activity in the HARPS radial velocities using a linear dependence with the calcium activity index log(RHK′), we are able, with a periodogram approach, to confirm the periods and the planetary nature of TOI-402.01 and TOI-402.02. We then derive robust estimates from the HARPS RVs for the orbital parameters of these two planets by modelling stellar activity with a Gaussian process and using the marginalised posterior probability density functions obtained from our analysis of TESS photometry for the orbital period and time of transit.
Results: By modelling TESS photometry and the stellar host characteristics, we find that TOI-402.01 and TOI-402.02 have periods of 4.75642 ± 0.00021 and 17.1784 ± 0.0016 days and radii of 1.70 ± 0.06 and 2.52 ± 0.11 R⊕ (precision 3.6 and 4.2%), respectively. By analysing the HARPS RV measurements, we find that those planets are both super-Earths with masses of 7.20 ± 0.81 and 8.79 ± 1.68 M⊕ (precision 11.3 and 19.1%), and small eccentricities compatible with zero at 2σ.
Conclusions: Although having rather similar masses, the radii of these two planets are very different, putting them on different sides of the radius gap. By studying the temporal evolution under X-ray and UV (XUV) driven atmospheric escape of the TOI-402 planetary system, we confirm, under the given assumptions, that photo-evaporation is a plausible explanation for this radius difference. Those two planets, being in the same system and therefore being in the same irradiation environment are therefore extremely useful for comparative exoplanetology across the evaporation valley and thus bring constraints on the mechanisms responsible for the radius gap
ROR1 and ROR2 expression in pancreatic cancer
Background: The Wnt receptors ROR1 and ROR2 are generating increased interest as cancer therapeutic targets but remain understudied in pancreatic ductal adenocarcinoma (PDAC). Compared to canonical Wnt/ β-catenin signalling, the role of noncanonical Wnt signalling in PDAC remains largely unknown. Only one study has investigated the prognostic significance of the noncanonical Wnt signalling receptor, ROR2 in PDAC. No studies have investigated the prognostic role of ROR1 in PDAC. Methods: Here, we performed analysis of ROR1 and ROR2 mRNA expression in three publicly available datasets ICGC-PACA-AU (n = 81), TCGA-PAAD (n = 150) and CPTAC-PDAC (n = 137). ROR1 and ROR2 protein expression from the CPTAC-PDAC discovery cohort were also analysed. Immunohistochemistry (IHC) using the validated anti ROR1 monoclonal antibody (4A5) was performed on the Australian Pancreatic Cancer Genome Initiative (APGI) cohort of PDAC samples (n = 152). Association between ROR1 cytoplasmic staining intensity and clinicopathological
parameters including stage, grade and overall survival (OS) was investigated. Results: High ROR1 mRNA expression levels correlated with a favourable OS outcome in all of the ICGC-PACA-AU, TCGA-PAAD and CPTAC-PDAC cohorts. ROR1 protein expression was not associated with stage, grade or OS in the APGI cohort. Conclusion: ROR1 and ROR2 have potential as prognostic markers when measured at the mRNA level in PDAC. Our IHC cohort did not support ROR1 protein expression in predicting OS, and highlighted the discrepancy of prognostic biomarkers when measured by MS, IHC and RNAseq
Emergence of SARS-CoV-2 Omicron lineages BA.4 and BA.5 in South Africa
Three lineages (BA.1, BA.2 and BA.3) of the SARS-CoV-2 Omicron variant of concern predominantly drove South Africa's fourth COVID-19 wave. We have now identified two new lineages, BA.4 and BA.5, responsible for a fifth wave of infections. The spike proteins of BA.4 and BA.5 are identical, and comparable to BA.2 except for the addition of 69-70del (present in the Alpha variant and the BA.1 lineage), L452R (present in the Delta variant), F486V and the wild type amino acid at Q493.The two lineages only differ outside of the spike region. The 69-70 deletion in spike allows these lineages to be identified by the proxy marker of S-gene target failure, on the background of variants not possessing this feature . BA.4 and BA.5 have rapidly replaced BA.2, reaching more than 50% of sequenced cases in South Africa by the first week of April 2022. Using a multinomial logistic regression model, we estimate growth advantages for BA.4 and BA.5 of 0.08 (95% CI: 0.08 - 0.09) and 0.10 (95% CI: 0.09 - 0.11) per day respectively over BA.2 in South Africa. The continued discovery of genetically diverse Omicron lineages points to the hypothesis that a discrete reservoir, such as human chronic infections and/or animal hosts, is potentially contributing to further evolution and dispersal of the virus
- …