1,012 research outputs found
Dynamics of the Lyman alpha and C IV emitting gas in 3C 273
In this paper we study the variability properties of the Lyman alpha and C IV
emission lines in 3C273 using archival IUE observations. Our data show for the
first time the existence of variability on time scales of several years. We
study the spatial distribution and the velocity field of the emitting gas by
performing detailed analyses on the line variability using correlations, 1D and
2D response functions, and principal component analysis. In both lines we find
evidence for two components, one which has the dynamic properties of gas in
Keplerian motion around a black hole with a mass of the order of 10^9 Mo, and
one which is characterized by high, blue-shifted velocities at large lag. There
is no indication of the presence of optically thick emission medium neither in
the Lya, nor in the Civ response functions. The component characterized by
blue-shifted velocities, which is comparatively much stronger in Civ than in
Lya, is more or less compatible with being the result of gas falling towards
the central black hole with free-fall acceleration. We propose however that the
line emission at high, blue-shifted velocities is better explained in terms of
entrainment of gas clouds by the jet. This gas is therefore probably
collisionally excited as a result of heating due to the intense infrared
radiation from the jet, which would explain the strength of this component in
Civ relative to Lya. This phenomenon might be a signature of disk-jet
interaction.Comment: 16 pages, 10 figures. Accepted for publication in ApJ. Uses aaste
EZ: A Tool for Automatic Redshift Measurement
We present EZ (Easy redshift), a tool we have developed within the VVDS
project to help in redshift measurement from otpical spectra. EZ has been
designed with large spectroscopic surveys in mind, and in its development
particular care has been given to the reliability of the results obtained in an
automatic and unsupervised mode. Nevertheless, the possibility of running it
interactively has been preserved, and a graphical user interface for results
inspection has been designed. EZ has been successfully used within the VVDS
project, as well as the zCosmos one. In this paper we describe its architecture
and the algorithms used, and evaluate its performances both on simulated and
real data. EZ is an open source program, freely downloadable from
http://cosmos.iasf-milano.inaf.it/pandora.Comment: accepted for publication in Publications of the Astronomical Society
of the Pacifi
AGN variability time scales and the discrete-event model
We analyse the ultraviolet variability time scales in a sample of 15 Type 1
Active Galactic Nuclei (AGN) observed by IUE. Using a structure function
analysis, we demonstrate the existence in most objects of a maximum variability
time scale of the order of 0.02-1.00 year. We do not find any significant
dependence of these maximum variability time scales on the wavelength, but we
observe a weak correlation with the average luminosity of the objects. We also
observe in several objects the existence of long-term variability, which seems
decoupled from the short-term one. We interpret the existence of a maximum
variability time scale as a possible evidence that the light curves of Type 1
AGN are the result of the superimposition of independent events. In the
framework of the so-called discrete-event model, we study the event energy and
event rate as a function of the object properties. We confront our results to
predictions from existing models based on discrete events. We show that models
based on a fixed event energy, like supernova explosions, can be ruled out. In
their present form, models based on magnetic blobs are also unable to account
for the observed relations. Stellar collision models, while not completely
satisfactory, cannot be excluded.Comment: 13 pages, 10 figures. Accepted for publication in A&
Prediction of pulse-to-pulse intensity fluctuation characteristics of high power ultrafast fiber amplifiers
Cataloged from PDF version of article.We report on the experimental characterization and theoretical prediction of pulse-to-pulse intensity fluctuations, namely, intensity noise, for ultrafast fiber amplifiers. We present a theoretical model with which the intensity noise of a Yb-doped fiber amplifier can be predicted with high accuracy, taking into account seed and pump noise, as well as generation of amplified spontaneous emission. Transfer of pump and seed signal modulations to the amplified output during fiber amplification are investigated thoroughly. Practically, our model enables design and optimization of fiber amplifiers with regards to their intensity noise performance. As a route to reducing noise imparted by pump diodes in a double-clad amplifier, we show the use of multiple, low-power diodes is more beneficial compared to a single, high-power diode due to the largely uncorrelated nature of their individual noise contributions. (C) 2014 AIP Publishing LLC
A comprehensive analysis of the hard X-ray spectra of bright Seyfert galaxies
Hard X-ray spectra of 28 bright Seyfert galaxies observed with INTEGRAL were
analyzed together with the X-ray spectra from XMM-Newton, Suzaku and RXTE.
These broad-band data were fitted with a model assuming a thermal
Comptonization as a primary continuum component. We tested several model
options through a fitting of the Comptonized continuum accompanied by a complex
absorption and a Compton reflection. Both the large data set used and the model
space explored allowed us to accurately determine a mean temperature kTe of the
electron plasma, the Compton parameter y and the Compton reflection strength R
for the majority of objects in the sample. Our main finding is that a vast
majority of the sample (20 objects) is characterized by kTe < 100 keV, and only
for two objects we found kTe > 200 keV. The median kTe for entire sample is
48(-14,+57) keV. The distribution of the y parameter is bimodal, with a broad
component centered at ~0.8 and a narrow peak at ~1.1. A complex, dual absorber
model improved the fit for all data sets, compared to a simple absorption
model, reducing the fitted strength of Compton reflection by a factor of about
2. Modest reflection (median R ~0.32) together with a high ratio of Comptonized
to seed photon fluxes point towards a geometry with a compact hard X-ray
emitting region well separated from the accretion disc. Our results imply that
the template Seyferts spectra used in AGN population synthesis models should be
revised.Comment: 26 pages, 12 figures, accepted for publication in MNRA
Multiwavelength campaign on Mrk 509 XII. Broad band spectral analysis
(Abridged) The simultaneous UV to X-rays/gamma rays data obtained during the
multi-wavelength XMM/INTEGRAL campaign on the Seyfert 1 Mrk 509 are used in
this paper and tested against physically motivated broad band models. Each
observation has been fitted with a realistic thermal comptonisation model for
the continuum emission. Prompted by the correlation between the UV and soft
X-ray flux, we use a thermal comptonisation component for the soft X-ray
excess. The UV to X-rays/gamma-rays emission of Mrk 509 can be well fitted by
these components. The presence of a relatively hard high-energy spectrum points
to the existence of a hot (kT~100 keV), optically-thin (tau~0.5) corona
producing the primary continuum. On the contrary, the soft X-ray component
requires a warm (kT~1 keV), optically-thick (tau~15) plasma. Estimates of the
amplification ratio for this warm plasma support a configuration close to the
"theoretical" configuration of a slab corona above a passive disk. An
interesting consequence is the weak luminosity-dependence of its emission, a
possible explanation of the roughly constant spectral shape of the soft X-ray
excess seen in AGNs. The temperature (~ 3 eV) and flux of the soft-photon field
entering and cooling the warm plasma suggests that it covers the accretion disk
down to a transition radius of 10-20 . This plasma could be the
warm upper layer of the accretion disk. On the contrary the hot corona has a
more photon-starved geometry. The high temperature ( 100 eV) of the
soft-photon field entering and cooling it favors a localization of the hot
corona in the inner flow. This soft-photon field could be part of the
comptonised emission produced by the warm plasma. In this framework, the change
in the geometry (i.e. ) could explain most of the observed flux and
spectral variability.Comment: 19 pages, 14 figures. Accepted for publication in A&
Chandra/HETG Doppler velocity measurements in stellar coronal sources
Stellar coronal sources have been observed in the past not only for their
astrophysical interest in the field of binary system evolution and interaction,
but also for their invaluable roles as benchmarks for plasma spectral models
and as calibration sources for high resolution spectroscopic X-ray instruments.
These include the gratings on-board Chandra and XMM-Newton, as well as the new
generation of high resolution capable-detectors recently flown on-board XRISM
and planned for the future also on-board the Athena and the LEM missions. In
our previous paper exploiting Chandra/HETG observations of the prototypical
coronal source Capella, it has been shown that the centroid energies of the
many X-ray emission lines detected in the spectrum of this object change as a
function of time due to the Doppler modulation within the binary. This is an
effect that needs to be corrected while performing calibrations of high
resolution X-ray instruments. In this paper, we extend our previous work on
Capella to other known stellar coronal sources which have been observed with
the Chandra/HETG (11 objects in total). We measure in several objects clear
trends in the velocity shifts along the orbit of the primary star, meaning that
in these sources one of the two star components is largely dominating the high
energy emission. In a number of systems the trend in the velocity shift is not
obvious. This can be ascribed to the fact that both stellar components
contribute significantly to the X-ray emission.Comment: Accepted for publication on MNRA
Multiwavelength campaign on Mrk 509: testing realistic comptonization models
Mrk 509 was observed by XMM-Newton and INTEGRAL in October/November 2009, with one observation every four days for a total of ten observations. Each observation has been fitted with a realistic thermal Comptonization model for the continuum emission. Prompted by the correlation between the UV and soft X-ray flux, we used a thermal Comptonization component for the soft X-ray excess. The UV to X-ray/gamma-ray emission of Mrk 509 can be well fitted by these components, pointing to the existence of a hot (kT ⌠100 keV), optically-thin (Ï âŒ 0.5) corona producing the primary continuum. In contrast, the soft X-ray component requires a warm (kT ⌠1 keV), optically-thick (Ï âŒ 10-20) plasma. Estimates of the amplification ratio for this warm plasma support a configuration relatively close to the âtheoreticalâ configuration of a slab corona above a passive disk. This plasma could be the warm upper layer of the accretion disk. In contrast, the hot corona has a more photon-starved geometry. The high temperature (⌠100 eV) of the soft-photon field entering and cooling it favors a localization of the hot corona in the inner flow. This soft-photon field could be part of the comptonized emission produced by the warm plasma
Multiwavelength campaign on Mrk 509 XV. A global modeling of the broad emission lines in the Optical, UV and X-ray bands
We model the broad emission lines present in the optical, UV and X-ray
spectra of Mrk 509, a bright type 1 Seyfert galaxy. The broad lines were
simultaneously observed during a large multiwavelength campaign, using the
XMM-Newton-OM for the optical lines, HST-COS for the UV lines and
XMM-Newton-RGS and Epic for the X-ray lines respectively. We also used FUSE
archival data for the broad lines observed in the far-ultra-violet. The goal is
to find a physical connection among the lines measured at different wavelengths
and determine the size and the distance from the central source of the emitting
gas components. We used the "Locally optimally emission Cloud" (LOC) model
which interprets the emissivity of the broad line region (BLR) as regulated by
powerlaw distributions of both gas density and distances from the central
source. We find that one LOC component cannot model all the lines
simultaneously. In particular, we find that the X-ray and UV lines likely may
originate in the more internal part of the AGN, at radii in the range
~5x10^{14}-3x10^{17} cm, while the optical lines and part of the UV lines may
likely be originating further out, at radii ~3x10^{17}-3x^{18} cm. These two
gas components are parametrized by a radial distribution of the luminosities
with a slope gamma of ~1.15 and ~1.10, respectively, both of them covering at
least 60% of the source. This simple parameterization points to a structured
broad line region, with the higher ionized emission coming from closer in,
while the emission of the low-ionization lines is more concentrated in the
outskirts of the broad line region.Comment: 10 pages, 5 figures, accepted for publication in Astronomy and
Astrophysic
- âŠ