57 research outputs found

    A quantitative systems pharmacology approach, incorporating a novel liver model, for predicting pharmacokinetic drug-drug interactions

    Get PDF
    All pharmaceutical companies are required to assess pharmacokinetic drug-drug interactions (DDIs) of new chemical entities (NCEs) and mathematical prediction helps to select the best NCE candidate with regard to adverse effects resulting from a DDI before any costly clinical studies. Most current models assume that the liver is a homogeneous organ where the majority of the metabolism occurs. However, the circulatory system of the liver has a complex hierarchical geometry which distributes xenobiotics throughout the organ. Nevertheless, the lobule (liver unit), located at the end of each branch, is composed of many sinusoids where the blood flow can vary and therefore creates heterogeneity (e.g. drug concentration, enzyme level). A liver model was constructed by describing the geometry of a lobule, where the blood velocity increases toward the central vein, and by modeling the exchange mechanisms between the blood and hepatocytes. Moreover, the three major DDI mechanisms of metabolic enzymes; competitive inhibition, mechanism based inhibition and induction, were accounted for with an undefined number of drugs and/or enzymes. The liver model was incorporated into a physiological-based pharmacokinetic (PBPK) model and simulations produced, that in turn were compared to ten clinical results. The liver model generated a hierarchy of 5 sinusoidal levels and estimated a blood volume of 283 mL and a cell density of 193 × 106 cells/g in the liver. The overall PBPK model predicted the pharmacokinetics of midazolam and the magnitude of the clinical DDI with perpetrator drug(s) including spatial and temporal enzyme levels changes. The model presented herein may reduce costs and the use of laboratory animals and give the opportunity to explore different clinical scenarios, which reduce the risk of adverse events, prior to costly human clinical studies

    Transcriptomics approaches in the early Arabidopsis embryo

    No full text
    Early plant embryogenesis condenses the fundamental processes underlying plant development into a short sequence of predictable steps. The main tissues, as well as stem cells for their post-embryonic maintenance, are specified through genetic control networks. A key question is how cell fates are instructed by unique cellular transcriptomes, and important insights have recently been gained through cell type-specific transcriptomics during post-embryonic development. However, the poor accessibility and small size of Arabidopsis (Arabidopsis thaliana) embryos have obstructed similar progress during embryogenesis. Here, we review the current situation in plant embryo transcriptomics, and discuss how the recent development of novel cell-specific analysis technologies will enable the identification of cellular transcriptomes in the early Arabidopsis embryo

    Transcriptomic Profiling of the Arabidopsis Embryonic Epidermis Using FANS in Combination with RNAseq

    No full text
    The fundamental mechanisms of cell identity and tissue establishment are important already from the very beginning of a plant's life and reiterate later during development. In order to unravel and understand the underlying mechanisms to generate differences that in turn lead to cell or tissue types, plant cells have to be separated and their transcriptional setup analyzed. We have previously demonstrated that fluorescence-activated nuclear sorting (FANS) is a powerful tool to generate nuclear transcriptomic profiles of the most inaccessible embryonic tissues. In this protocol, we extend this effort to combine FANS with next generation RNA sequencing (RNA-seq) to achieve early embryonic transcriptomes of Arabidopsis epidermis precursor tissue (protoderm) and the inner tissue counterpart

    Cell type-specific transcriptomics in the plant embryo using an adapted INTACT protocol

    No full text
    Cells differentiate from undifferentiated precursors in order to establish the tissues of vascular plants. The different cell types and stem cells are first specified in the early embryo. How cell type specification is instructed by transcriptional control on a genome-wide level is poorly understood. A major hurdle has been the technical challenge associated with obtaining cellular transcriptomes in this inaccessible tissue. Recently, we adapted a two-component genetic labeling system called INTACT to isolate nuclei and generate a microarray-based expression atlas of the cell types in the early Arabidopsis thaliana embryo. Here we present a step-by-step description of the adapted INTACT protocol, as well as the approach to generate transcriptomic profiles. This protocol has been adapted to account for using seeds with embryos of various developmental stages as a starting material, and the relatively few cell type-specific nuclei that can be isolated from embryos.</p

    Integration of growth and patterning during vascular tissue formation in Arabidopsis

    No full text
    Coordination of cell division and pattern formation is central to tissue and organ development, particularly in plants where walls prevent cell migration. Auxin and cytokinin are both critical for division and patterning, but it is unknown how these hormones converge upon tissue development. We identify a genetic network that reinforces an early embryonic bias in auxin distribution to create a local, nonresponding cytokinin source within the root vascular tissue. Experimental and theoretical evidence shows that these cells act as a tissue organizer by positioning the domain of oriented cell divisions. We further demonstrate that the auxin-cytokinin interaction acts as a spatial incoherent feed-forward loop, which is essential to generate distinct hormonal response zones, thus establishing a stable pattern within a growing vascular tissue
    corecore