10 research outputs found

    Platform-portable reinforcement learning methods to localize underwater targets

    Get PDF
    In this study, we present a platform-portable deep reinforcement learning method that has been used as a path-planning system to localize underwater objects with autonomous vehicles.This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 893089. This work also received financial support from the Spanish Ministerio de Economía y Competitividad (BITERECO: PID2020-114732RBC31). This work acknowledges the ’Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S).Peer ReviewedPostprint (author's final draft

    Online multilayered motion planning with dynamic constraints for autonomous underwater vehicles

    Get PDF
    Underwater robots are subject to complex hydrodynamic forces. These forces define how the vehicle moves, so it is important to consider them when planning trajectories. However, performing motion planning considering the dynamics on the robot’s onboard computer is challenging due to the limited computational resources available. In this paper an efficient motion planning framework for autonomous underwater vehicles (AUVs) is presented. By introducing a loosely coupled multilayered planning design, our framework is able to generate dynamically feasible trajectories while keeping the planning time low enough for online planning. First, a fast path planner operating in a lower-dimensional projected space computes a lead path from the start to the goal configuration. Then, the lead path is used to bias the sampling of a second motion planner, which takes into account all the dynamic constraints. Furthermore, we propose a strategy for online planning that saves computational resources by generating the final trajectory only up to a finite horizon. By using the finite horizon strategy together with the multilayered approach, the sampling of the second planner focuses on regions where good quality solutions are more likely to be found, significantly reducing the planning time. To provide strong safety guarantees our framework also incorporates the conservative approximations of inevitable collision states (ICSs). Finally, we present simulations and experiments using a real underwater robot to demonstrate the capabilities of our framework

    Advancing fishery-independent stock assessments for the Norway lobster (Nephrops norvegicus) with new monitoring technologies

    Get PDF
    The Norway lobster, Nephrops norvegicus, supports a key European fishery. Stock assessments for this species are mostly based on trawling and UnderWater TeleVision (UWTV) surveys. However, N. norvegicus are burrowing organisms and these survey methods are unable to sample or observe individuals in their burrows. To account for this, UWTV surveys generally assume that "1 burrow system = 1 animal", due to the territorial behavior of N. norvegicus. Nevertheless, this assumption still requires in-situ validation. Here, we outline how to improve the accuracy of current stock assessments for N. norvegicus with novel ecological monitoring technologies, including: robotic fixed and mobile camera-platforms, telemetry, environmental DNA (eDNA), and Artificial Intelligence (AI). First, we outline the present status and threat for overexploitation in N. norvegicus stocks. Then, we discuss how the burrowing behavior of N. norvegicus biases current stock assessment methods. We propose that state-of-the-art stationary and mobile robotic platforms endowed with innovative sensors and complemented with AI tools could be used to count both animals and burrows systems in-situ, as well as to provide key insights into burrowing behavior. Next, we illustrate how multiparametric monitoring can be incorporated into assessments of physiology and burrowing behavior. Finally, we develop a flowchart for the appropriate treatment of multiparametric biological and environmental data required to improve current stock assessment methods

    Advancing fishery-independent stock assessments for the Norway lobster (Nephrops norvegicus) with new monitoring technologies

    Get PDF
    The Norway lobster, Nephrops norvegicus, supports a key European fishery. Stock assessments for this species are mostly based on trawling and UnderWater TeleVision (UWTV) surveys. However, N. norvegicus are burrowing organisms and these survey methods are unable to sample or observe individuals in their burrows. To account for this, UWTV surveys generally assume that “1 burrow system = 1 animal”, due to the territorial behavior of N. norvegicus. Nevertheless, this assumption still requires in-situ validation. Here, we outline how to improve the accuracy of current stock assessments for N. norvegicus with novel ecological monitoring technologies, including: robotic fixed and mobile camera-platforms, telemetry, environmental DNA (eDNA), and Artificial Intelligence (AI). First, we outline the present status and threat for overexploitation in N. norvegicus stocks. Then, we discuss how the burrowing behavior of N. norvegicus biases current stock assessment methods. We propose that state-of-the-art stationary and mobile robotic platforms endowed with innovative sensors and complemented with AI tools could be used to count both animals and burrows systems in-situ, as well as to provide key insights into burrowing behavior. Next, we illustrate how multiparametric monitoring can be incorporated into assessments of physiology and burrowing behavior. Finally, we develop a flowchart for the appropriate treatment of multiparametric biological and environmental data required to improve current stock assessment methods

    Compliant Manipulation With Quasi-Rigid Docking for Underwater Structure Inspection

    No full text
    Offshore wind farms are a crucial source of renewable energy, but maintenance and repair can be challenging due to their remote locations and harsh environmental conditions. Professional divers or Remotely Operated Vehicles (ROVs) are commonly used to conduct maintenance operations, but they come with high daily operational costs. Autonomous Underwater Vehicles (AUVs) have the potential to improve the efficiency, safety, and costs of maintenance operations. This project evaluates the feasibility of using an AUV to conduct a cathodic protection (CP) survey, which involves measuring the corrosion potential of underwater structures to prevent deterioration. The AUV is equipped with a manipulator that has a CP probe with a sharp tip to puncture through the structure’s coating and make contact with the steel underneath. To ensure high accuracy and reduce environmental perturbances, the AUV attaches to the structure while conducting the survey. The technology and methods used in this project are demonstrated in a water tank using a Girona1000 AUV. Task Priority kinematic control is combined with a custom force control strategy based on admittance control to enable tracking of the end-effector configuration and contact force during the probing operation. The mission flow control is implemented using behavior trees. The results show that the use of AUVs for CP surveys is feasible and has the potential to significantly improve the efficiency, safety, and costs of maintenance operations in offshore wind farms

    Girona 500 AUV: From Survey to Intervention

    No full text

    Online motion planning for unexplored underwater environments using autonomous underwater vehicles

    No full text
    We present an approach to endow an autonomous underwater vehicle with the capabilities to move through unexplored environments. To do so, we propose a computational framework for planning feasible and safe paths. The framework allows the vehicle to incrementally build a map of the surroundings, while simultaneously (re)planning a feasible path to a specified goal. To accomplish this, the framework considers motion constraints to plan feasible 3D paths, that is, those that meet the vehicle's motion capabilities. It also incorporates a risk function to avoid navigating close to nearby obstacles. Furthermore, the framework makes use of two strategies to ensure meeting online computation limitations. The first one is to reuse the last best known solution to eliminate time-consuming pruning routines. The second one is to opportunistically check the states' risk of collision. To evaluate the proposed approach, we use the Sparus II performing autonomous missions in different real-world scenarios. These experiments consist of simulated and in-water trials for different tasks. The conducted tasks include the exploration of challenging scenarios such as artificial marine structures, natural marine structures, and confined natural environments. All these applications allow us to extensively prove the efficacy of the presented approach, not only for constant-depth missions (2D), but, more important, for situations in which the vehicle must vary its depth (3D)

    ATLANTIS - The Atlantic Testing Platform for Maritime Robotics

    No full text
    The ATLANTIS project aims to establish a pioneer pilot infrastructure that will allow the demonstration of key enabling robotic technologies for inspection and maintenance of offshore wind farms. The pilot will be implemented in Viana do Castelo, Portugal, and will allow for testing, validation and demonstration of technologies with a range of technology readiness level, in near-real/real environments.The demonstration of robotic technologies can promote the transition from traditional inspection and maintenance methodologies towards automated robotic strategies, that remove or reduce the need of human-in-the-loop, reducing costs and improving the safety of interventions. Eight scenarios, split into four showcases, will be used to determine the required developments for robotic integration and demonstrate the applicability in the inspection and maintenance processes. The scenarios considered were identified by end-users as key areas for robotics.</p
    corecore