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I. INTRODUCTION

One of the main concerns about reinforcement learning (RL)
methods is how to transfer the policies learned in simulated
environments to reality while obtaining similar behaviors
and performance (i.e., sim-to-real transferability), which is of
special importance in robot controllers [1]. Multiple research
directions have been followed during the last few years to
reduce the gap between the simulated and real worlds to
accomplish more efficient policy transfer. One of the most
widely used methods for learning transfer is domain random-
ization, which exposes the model to a variety of conditions,
to make the model robust to modeling inaccuracies in these
aspects. Randomizations are considered pivotal to achieving
sim-to-real transfer and robust polices in general [2]. Another
common method is system identification, which uses high-
fidelity environments with precise mathematical models of
physical and dynamic systems. However, system identification
has the drawback of being computationally demanding, thus
requiring more time for training. Other relevant methods are
zero-shot transfer and domain adaptation [3].

Most of the studies on RL have been focused on low-
level controllers that use the end-to-end approach, where the
RL network uses as input the raw information provided by
onboard sensors and gives as output the continuous control
actions to apply to the actuators [4]. However, this approach
has two main limitations: (i) it has a strong dependency on
the platform’s configuration, e.g., related to the information
available from the sensors and their quality, or the number
of actuators, such as thrusters, and their configuration; and
(ii) the sim-to-real transfer gap is even harder to reduce,
as the trained policy is strongly affected by the dynamics
of the robotic platform. For example, in [5] the authors
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used a second training process in the real vehicle, where
the learning procedure continued online. In [6] the controller
needed additional adjustments to compensate for the difference
between the simulations and the real world, but even with that,
the field results showed lower performance.

In this study, we present a platform-portable deep reinforce-
ment learning method that has been used as a path-planning
system to localize underwater objects with autonomous ve-
hicles, Fig. 1. We have designed a high-level control system
to reduce the above-mentioned problems and have great sim-
to-real transfer capabilities. Moreover, our method is easily
configurable to be deployed on different platforms and under
different conditions. For example, the trained agent has been
successfully deployed in two different vehicles: (i) a Wave
Glider, an autonomous surface vehicle (ASV) from Liquid
Robotics (USA); and (ii) a Sparus II, an autonomous under-
water vehicle (AUV) from IQUA Robotics (Spain). The tests
were conducted at Monterey Bay in California, and the Sant
Feliu de Guı́xols harbor in Catalonia (Spain). In both cases, the
vehicles used range-only target tracking methods to localize
an anchored transponder [7].

Fig. 1: Guidance, navigation and control system, and some of
the main associated research lines in Guidance. In bold, those
aspects described in detail are reported.
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II. REINFORCEMENT LEARNING PATH PLANNING

The autonomous navigation system on marine vehicles is
typically divided into three main layers, which are known as
Guidance, Navigation, and Control systems (GNC) [8], Fig.
1. The Guidance system is the highest control level of the
vehicle during a mission. Usually, it has a waypoint generator,
which establishes the points to cross to accomplish the goal of
the mission. In addition, it can incorporate several algorithms
such as path planning, obstacle avoidance, or multi-vehicle
collaboration, which are essential to improving the autonomy
of the vehicle.

Many algorithms have been designed for AUV path plan-
ning (and obstacle avoidance) during the last decades [9].
Most of these works have focused on path planning under the
influence of marine currents, obstacle avoidance, or seabed
coverage. The optimization objectives for AUV path planning
are usually the path length, time, and power consumption.
However, path planning can also be used to optimize for
underwater target localization [10].

A. Range-only target localization

The relationship between the acoustic sensor location and
the accuracy that can be achieved in parameter estimation
under different measurement typologies has been widely stud-
ied [11]. In general, the computation of the optimal sensor
configuration can be carried out analytically by examining
the corresponding Cramer-Rao Bound (CRB) or its Fisher
Information Matrix (FIM) [12]. If a set of noisy observations
is used to estimate a certain parameter of interest, the CRB
sets the lowest bound on the covariance matrix that can
asymptotically be achievable using any unbiased estimation
algorithm. For example, the CRB method was used to find the
optimal sensors’ locations of an underwater sensor network
to find a target using their ranges [13]. This approach was
adapted to derive the optimal path shape that an ASV should
take to compute the position of an underwater target using
range-only and single-beacon techniques [10].

Within this framework, the use of deep RL techniques has
been proposed to find the optimal trajectory for an autonomous
vehicle to track underwater targets. Deep RL uses the formal
framework of the Markov Decision Process (MDP) to define
the interaction between a learning agent and its environment
in terms of states, actions, and rewards. Whereas most of the
attention in deep RL has focused on game theory (e.g., to solve
Atari games [14]), the same principles can be used to solve
path planning and trajectory optimization. In our previous
study [15], we showed that the RL agent1 can learn a policy
with a performance comparable to the analytically derived
optimal trajectory. This approach highlighted the potential for
tracking marine animals by autonomous underwater vehicles
and could enable coordinated fleets of vehicles to localize

1Data and materials availability: The range-only target
localization algorithms with deep RL are available on GitHub:
github.com/imasmitja/RLforUTracking

and track a set of underwater assets via multi-agent, multi-
target approaches that are currently intractable with existing
methodologies.

In this study, the development of a complete Guidance
system for an adaptive AUV or ASV has been proposed, which
is based on a deep RL algorithm. The system will be designed
to be detached from the lower Control and Navigation layers
to make it platform-portable and easily deployable in real
environments. It is worth noticing that this is envisioned as
a first necessary step to validate the use of RL to tackle such
problems, which could be used later on in more complex
scenarios.

The case of a single tracker (an AUV/ASV) and a single
object to localize have been used, hereinafter the agent and the
target, respectively. The final goal of the agent is to localize
and track the target. Two key algorithms run simultaneously
to achieve this goal: (i) agent path planning, which is based
on the policy learned using the RL; and (ii) the target position
estimation based on range data acquired online, where we used
a Least Square (LS) and a Particle Filter (PF) approaches [16].
In this work, we focus on solving the agent path planning
problem by employing the typical scenario where the agent
moves in a 2D environment (e.g., an ASV or an AUV at
constant depth) and the target’s depth is known by the agent.
Both the agent and the target have an acoustic modem, which
can be used to measure the distance between them. Finally,
we also assume that the agent knows its position by using its
navigation methods (e.g., GPS or dead reckoning).

B. Deep reinforcement learning architecture

A Soft Actor-Critic (SAC) [17] algorithm has been imple-
mented and tested for solving this problem. SAC is a state-of-
the-art model-free actor-critic deep RL algorithm in continuous
action domains. The main characteristic is that it maximizes
reward while also maximizing the entropy of the policy as a
regularizer to obtain robust policies. We conducted many tests
with other architectures, such as Deep Deterministic Policy
Gradient (DDPG). However, SAC outperformed them in all
the studied scenarios.

In addition, the actor-critic algorithm implemented can
enable/disable a Long-Short-Term-Memory (LSTM) network,
following the work conducted by [18]. The LSTM is a type
of RNN that has an outer recurrence from the outputs to the
inputs of the hidden layer and also an internal recurrence
between LSTM-Cells. A part of the information is transmitted
to the next moment in the form of memory and participates in
the training of input-output data pairs. Therefore, the training
results at the current moment are determined by both the
current training data and the historical training data.

A top-level representation of the structure of this recurrent
actor-critic framework is illustrated in Fig. 2.

C. Training environment

The training environment is based on the OpenAI particle
[19], which is a multi-agent particle world with a continuous
observation and action space. This environment has been



Fig. 2: Overview of the recurrent actor-critic network, (A)
Actor and (B) Critic, both with the possibility of en-
abling/disabling the RNN. Notation: LA is a Linear Activation
function, ReLU is a Rectified Linear Unit activation function,
FC is a Fully Connected layer, and CAT is a concatenate
function.

modified to incorporate the target estimation algorithm (based
on an LS or a PF range-only triangulation technique) and
its visualization. The OpenAI particle action space has been
modified to fit the constraints of our scenario, which is
explained below.

In this experiment, we have considered an agent with a
constant velocity v, and a single action space referred to the
variation of the yaw angle ψ. This is a common operational
mode when it is applied to torpedo-shape AUVs (e.g., the
Sparus II AUV (Iqua Robotics, Spain)) or vehicles that do not
use thrusters (e.g., the Wave Glider (Liquid Robotics, USA)).

The agent is equipped with a sensor that measures distances
to the targets at specified discrete intervals of time defined by
d̄t = ||dt|| + wt, t ∈ {1, 2, . . . ,m}. Where dt = pt − qt is
the relative position vector of the target with respect to the
agent, m indicates the number of measurements carried out,
and wt ∼ N (ϵ, σ2) is a non-zero mean Gaussian measure-
ment error where σ2 is the variance and ϵ is the systematic
error, mostly due to the sound speed uncertainty under water.
These measurements can be used to obtain an estimation of
the target’s position q̂ using range-only and single-beacon
techniques [16]. In this study, a simple unconstrained LS
algorithm has been chosen during the training for its run-time
performance (orders of magnitudes below its competitors). It
is worth mentioning that a PF can also be used during the test
for its great capability to track a moving target.

The observations at each time-step t that we can get from
the environment include the position p and velocity v vectors
of the agent, the relative position vector of the estimated target
position (d̂t = pt − q̂t), and the projected distance measured
by the sensor d̄pt: ot = [pt, vt, d̂t, d̄pt]. The action space is
determined by the force applied to the yaw (ψ) angle of the
agent, as at ≜ uψ .

Additionally, a mini-batch of N experiences
{(hlt, ot, at, rt, ot+1, dt)i}Ni=1 is sampled from the replay
buffer D of experiences at each iteration. The past history
hlt is only taken into consideration if the LSTM is enabled
inside the actor-critic algorithm.

Finally, in RL, the agent obtains rewards as a function of
the state and the agent’s actions. The agent aims to maximize
the total expected return R =

∑T
t=0 γ

trt, where γ is a
discount factor and T is the time horizon. A combination of
dense and sparse reward methods has been proposed, where
we have defined two different goals to optimize the agent’s
trajectory: (i) a reward function based on the distance between
the agent and the target, and (ii) a reward function based
on the estimated target position error. In addition, a terminal
reward was implemented. The overall goal is to optimize
for error reduction but also to maintain the agent close to
the target to increase the acoustic link performance while
reducing collisions. Consequently, the final reward is given
by r = rd + re + rterminal, defined as

rd =

{
λ(0.5− d̂) if d̂ > dth

1 else
, (1)

where λ is a positive constant, d̂ is the distance between
the agent and the estimated target position, and dth is the
predefined distance threshold to be reached by the agent.

re =

{
λ(0.5− eq) if eq > eth

1 else , (2)

where eq = ||q̂t−qt|| is the error between the predicted target
position and the real target position at time-step t, and eth is
the predefined error threshold to be reached by the agent.

rterminal =

 −100 if d̂ > d̂max
−1 if d̂ < d̂min
0 else

, (3)

where d̂max is the maximum distance where the agent can
go related to the target, and d̂min is a threshold set to avoid
collisions between the target and the agent.

III. VEHICLE’S GUIDANCE SYSTEM

The deep RL algorithm generates an angle action based on
the observation state space (i.e., the position of the tracker,
the estimated position of the target, and the range measured).
In general, the guidance system does not have access to the
closed-loop Control algorithms in most autonomous vehicles.
The vehicle can only be controlled by specifying the waypoints
that it has to reach. Consequently, the angle actions must be
translated into waypoints by placing them at the specified RL
angle action related to the current vehicle’s yaw. The distance
of these generated waypoints has been chosen to be long
enough to maintain a desired vehicle’s speed (some vehicles
will reduce their velocity if they are close to the final position)
and also to maintain the safety of the vehicle, as too far
away points could cause the vehicle to reach dangerous places
such as coastal zones. This step can be observed in the block



diagram represented in Fig. 3 referred to as ”Compute next
WP with RL” (in red).

The remaining components of the vehicle’s guidance sys-
tem consist of the following steps: (i) If the system is not
initialized, the first position of the vehicle is saved as the
origin and the initial target prediction. (ii) A new waypoint
will be computed only if the vehicle has traveled beyond a
threshold. This is conducted to ensure that the measurements
and associated updates are equally distributed across the
vehicle’s trajectory without influence from its velocity. (iii)
If a new range is measured, the estimated target position is
updated using either PF or LS. Also, an additional weighted
filter can be applied to the estimations. If the range is not
measured (e.g., due to poor acoustic communications), the
system computes a planar range based on the last predicted
target position, as it is required as input to the RL algorithm to
compute the new action. Additionally, if the communication
between the target and tracker fails for too long, the system
will stop updating the vehicle’s waypoints as a safety measure
(i.e., to allow an external user to stop the vehicle or to stop
sending the vehicle to an unwanted place). Finally, in step (iv),
the system computes the next waypoint to reach based on the
RL action and sends the specific command to the vehicle’s
main control unit.

IV. FIELD TESTS

To validate the platform-portable approach presented in this
study, two different tests were designed. First, a Wave Glider
was used to localize an acoustic transponder attached to an
AUV docking station located at 70 m depth in Monterey Bay
(California), see Fig. 4. And second, a Sparus II AUV to
localize a transponder attached to a boat inside the harbor
of Sant Feliu de Guı́xols (Spain), see Fig. 5.

Besides the differences between both vehicles, it is worth
noting that the environment was also significantly different.
The Wave Glider was moving in an open area without the
possibility of colliding with any obstacles, whereas the Sparus
II test was conducted inside a harbor where the vehicle’s
movement was more constrained. To overcome this issue,
a scaling factor was applied in all the dimensions of the
state vector used by the RL algorithm deployed in Sparus
II. During the training, the reward function had a parameter
that gave a maximum reward to the agent (i.e., the tracker)
when the distance concerning the target was below 0.3 (which
represented 300 m in the field). With this reward, the agent
learned an optimal trajectory that consisted of conducting
loops with a radius of ∼200 m around the target. To reduce
this radius, we applied a scaling factor of 20 to all the distances
(e.g., the distance measured between the tracker and the target,
or the relative x and y positions of the target). With this, the
same policy learned by the agent could be used in the harbor
experiment. The Sparus II with this tuned RL policy conducted
loops of ∼10 m instead of ∼200 m. Because the scaling factor
was applied to all the state space, the policy was not affected,
and the target could be localized.

Fig. 3: Block diagram of the vehicle’s guidance system.
The target position is estimated in the blue block using a
Particle Filter or a Least Square method. The next waypoint
is computed based on the Reinforcement Learning algorithm
in the red block and sent to the main vehicle’s control unit
using the desired command (e.g., a GoToWatch).

The vehicle’s guidance system was installed inside the Wave
Glider Hotspot payload. The Hotspot is an embedded computer
with a set of communication interfaces (acoustic and aerial)
that has access to the main vehicle control unit. This makes the
vehicle a communication hub between the underwater assets
and onshore servers. This payload was in charge of executing
the RL path planning and target estimation algorithms, as well
as other safety measures, such as avoiding navigation close to
the shore. Because the vehicle was on the surface and had cell
phone communications, the evolution of the experiment could
be monitored continuously, which allowed the debugging of
the system.

On the contrary, the Sparus II architecture is based on
the Robot Operating System (ROS). This allowed to the
simulation of the RL path planning and the overall guidance
system in a realistic simulated environment from Iqua Robotics



Fig. 4: Test conducted at Monterey Bay (a) with the Wave Glider ASV (c). Results are shown in (b), where the vehicle trajectory is
represented (blue) and the target position is estimated with ultra-short baseline (light-green), least squares (yellow), and particle filters
(green) methods.

Fig. 5: Test conducted at Sant Feliu de Guı́xols harbor (a) with the Sparus II AUV (c). Results are shown in (b), where the vehicle trajectory
is represented (blue) and the target position is estimated with least squares (yellow), and particle filters (green) methods.

(iquarobotics.com), using its control architecture COLA2 [20].
Different simulations were conducted before the field tests to
ensure that the implementation was ready to be used and the
implemented ROS Guidance system package was interacting
correctly with the vehicle’s architecture. For example, in Fig.
6 the vehicle was able to localize a static target.

V. CONCLUSIONS

This study demonstrates a path planning system based on
deep RL that has been deployed on two different robotic
platforms and conducted field tests. The strategy proposed
here shows how the sim-to-real transferability of this kind
of algorithm can be addressed by using a high-level control
system. The main guidance system architecture is presented,
and two field experiments are conducted in an open-sea area
and inside a harbor, using as agents a Wave Glide ASV
and a Sparus II AUV. The RL algorithm was trained in a
simulated environment to optimize the agent’s trajectory for
range-only underwater target localization. The architecture
developed here could also be used to train multi-agent and

multi-target scenarios where a group of coordinated agents
can navigate to find and track a series of underwater assets at
previously unknown positions.
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