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Figure 3. Results for a troublesome mission: (a) Random T2 (worst 
result), (b) Connectivity and Bug-based T2 (black dot = start, red 
dot = goal).

Mission RT2 CT2/BT2 Bug2

1 313.62 281.54 388.00

2 420.65 420.65 426.00

3 623.00 405.17 578.00

4 286.83 368.55 421.00

5 883.47 883.47 934.00

6 1586.71 1484.91 1672.00

7 663.82 246.85 797.00

Total (m) 4778.10 4091.19 5216.00

Table I. Comparison of the path lengths of Random T2 (RT2), Con-
nectivity T2 (CT2), Bug-based T2 (BT2) and Bug2.

5. Conclusions
A novel family of geometric algorithms of motion planning based 
on potential fi elds and the traversability and tenacity principles have 
been put forward. The T2 variant paths have resulted, on average, sig-
nifi cantly shorter than the ones of other algorithms for a representa-
tive set of missions. An extension of T2 strategies to three dimensions 
is under development at the moment to take advantage of the 6 DOF 
of AUVs.
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1. Introduction:
A mission controller is the part of the control architecture that is in 
charge of defi ning a thread of tasks to be carried out in order to ful-
fi l a mission. Each task can be executed by means of some vehicle 
primitives often referred as basic robot commands or behaviours. 
The mission controller must defi ne how the mission is divided into a 
set of tasks and how primitives are combined to fulfi l each task. The 
development of a Mission Control System (MCS) for an Autonomous 
Underwater Vehicle (AUV) lies at the intersection of a Discrete Event 
System (DES), in charge of enabling/disabling basic actions when 
some events are produced, and the Dynamic Control Continuous 
System (DCS), used for every action to achieve a specifi c goal [1]. The 

main objective of this project is defi ning a language able to describe 
AUV missions in a simple but versatile way. 

The Petri net formalism [2] has been chosen to describe the missions 
that the MCS is going to execute, but instead of using graphic tools 
to describe these Petri nets, our approach uses a Mission Control Lan-
guage (MCL), which compiles into a Petri net. The adoption of this 
formalism helps us evaluating the net properties at compilation time 
to detect, for instance, if possible inconsistent states can be reached. 
Hence corrective actions can be adopted before actual execution. 

This work is structured as follows, section 2 describes our proposal 
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The traversability principle suggests banning those directions where 
an obstacle has been detected (fi gure 2(a)) and, in case the GoTo be-
haviour response results banned, generates two alternative obstacle-
free directions, generically labelled as left and right (fi gure 2(b)). On 
the other hand, which direction, left or right, is taken by the robot is 
decided according to the tenacity principle, in the sense that it tena-
ciously suggests taking the same direction that was selected the last 
time. These two principles, although simple in concept, have proven 
fully eff ective to solve trapping situations. As a consequence of the 
application of the T2 principles, a global behaviour emerges by which 
the robot circumnavigates the contour of an obstacle once it is aware 
of its existence. 

3. Three T2-based Algorithms
The application of the T2 principles require making two decisions 
during the navigation: (1) in which direction the contour of an obsta-
cle is followed (i.e. which direction is taken the fi rst time the tenacity 
principle is applied), and (2) at which moment the robot decides to 
leave the contour of an obstacle to continue with the navigation to-
wards the goal point.

Random T2, Connectivity T2 and Bug-based T2 are three strategies 
deriving from T2 which make the two aforementioned decisions in 
diff erent ways, giving rise to diff erent performances and capabilities. 
They are briefl y described in the following: 
• In Random T2, the robot chooses randomly the direction to follow 
the contour, while the contour is left as soon as the direction towards 
the goal point becomes allowed.
• Connectivity T2 decides the direction to follow the contour accord-
ing to a minimum turn criterion and remembers which direction is 
taken, in order to explore the other direction in case the goal point 
is not reached. The contour of the obstacle is also left as soon as the 
direction towards the goal point becomes allowed.
• Bug-based T2 also chooses the minimum turn direction to follow 
the contour. As for the leaving to occur, either: (1) the navigation fi l-
ter must indicate there is a free-obstacle path towards the goal point 
and this must be the fi rst time the robot leaves the obstacle at ap-
proximately that same position, or (2) the robot trajectory must cut 
the line joining the start and goal points (M-line) and the distance 
from the robot to the goal has to be shorter than the one associated 
with the last time this condition was satisfi ed. Each time (1) is satis-
fi ed the M-line is redefi ned using the current robot position as the 
start position.

4. Experimental Results
In order to show the eff ectiveness of the T2 strategies, fi gure 3 shows 
simulation results for a maze-like environment, while table I provides 
a comparison of path lengths with a well-known motion planning 
algorithm called Bug2 [3] for a set of up to seven diff erent environ-
ments.
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Figure 1: MCS connected to a particular Vehicle Architecture 
through the AAL. 
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for a MCS. Section 3 presents how the MCL works. Finally, section 4 
presents the conclusions.

2. A Generic Mission Control System:
Our intention has been to design the MCL as generic as possible and 
to allow for an easily tailoring to diff erent control architectures. To 
achieve this goal our MCS presents a clear interface with any par-
ticular vehicle control architecture based on Actions and Events. Be-
tween the MCS and the vehicle control architecture there is an Archi-
tecture Abstraction Layer (AAL) that adapts these Actions and Events 
for every particular architecture and provides, moreover, provides 
an expressions evaluator (with accessibility to all the vehicle internal 
variables) as well as a set of timers (
Figure 1).
Actions in the MCS, provoke the execution of vehicle primitives with-
in the vehicle architecture or the evaluation of an expression or the 
initialization of a timer within the AAL. Events, are used to notify any 
thing that happens inside the vehicle architecture or the AAL (vehi-
cle primitive achievements, timeouts, vehicle exception, evaluation 
results, …)
The AAL depends on the control architecture being used allowing 
the MCS to remain architecture-independent. With the AAL, it is pos-
sible use this MCS approach in diff erent vehicles with diff erent con-
trol architectures. 

Figure 2: Example of an AutoHeading Task.

3. Mission Control Language:
From the point of view of the MCS, a mission is just a Petri net that 
evolves when some Events are received and being able to execute 
a set of desired Actions. To describe a mission, MCL uses two diff er-
ent sections: the architecture-link and the mission itself. In the ar-
chitecture-link all the Actions and Events as well as Vehicle Variables 
or Resources that are available from the MCS have to be defi ned to-
gether with their correspondence (Vehicle Primitives, Notifi cations, 
Variables…). Tasks have to be defi ned also in this section. A task is de-
fi ned as a fl ow of states, where each state is characterised by a set of 
enabled Vehicle Primitives and timers pursuing a set of related goals. 
When these goals are achieved, the vehicle architecture notifi es the 
AAL that sends diff erent Events. As a result, MCS changes its state 
and executes a set of Actions. In our approach, this control execu-
tion is modelled with an ordinary Petri net extended as follows:  (1) 
Every transition has a set of events and a set of actions associated; 
(2) a transition t is enabled if each input place p of t is marked with 
1 token (we use ordinary Petri nets) but can fi re only if its associated 
events are received. Finally, (3) when a transition t is fi red, in addition 

Figure 3: Example of a control structure: If(Task1) then Task2 else 

Task3.

to removing 1 token from each input place p of t, and adding 1 token 
to each output place p of t, the set of associated actions is executed. 
With these extensions it is possible to disambiguate the confl icts in 
the Petri net by fi ring only the transitions whose events have been 
received.     

In order to illustrate how a task is implemented, let us consider the 
Autoheading task shown in Figure 2. This is a very simple task involv-
ing only one Vehicle Primitive (KeepOrientation) and a timer. The 
corresponding Petri net has a transition to enable the timer and the 
KeepOrientation primitive (t1) and two transitions more (t2 and t3) 
waiting for the events timeout expiration or orientation achieve-
ment. Places p3 and p4 are pure indicatives of the state in which the 
Petri net is. Transitions t4 and t5 are used to deactivate the timer and 
the KeepOrientation primitive. 
To link diff erent tasks between them, control structures are intro-
duced. Control structures are Petri nets that defi ne the tasks control 
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ELIMINATION UNITS FOR MARINE OIL POLLUTION (EU-MOP)
Jesús Carbajosa  Waldo Rethemías
(CETEMAR Centro de Estudios Técnico Marítimos)

Introduction
This paper introduces a research project called EU-MOP, founded by 
EU Commission under the 6th Frame Work Programme (DG-RTD), 
that involves the design and evaluation of an intelligent robot system 
to respond to oil spills and new spill management tools.
The R&D team consist of 13 multidisciplinary European partners, 
everyone of which have an outstanding knowledge in their relevant 
areas.

Background
Oil pollution either from marine accidents or routine ship opera-
tions is one of the major problems that threaten the marine environ-
ment. Eff orts in protecting the environment after an oil spill could 
cost billions of euros in cleanup and subsequent damage costs, often 
producing questionable results. The key factor for effi  cient clean-
up operations is to develop an adequate structure focusing on the 
confrontation of oil when is into the sea and diminish the impact on 
nearby coasts. 

Objectives
In fact there is a direct need for a renovation of anti-pollution meth-
odologies and equipment. Such a goal must be incorporated at all 
hierarchical levels, taking the necessary legislative and surveillance 
measures, therefore in-situ techniques that allow for the control and 
elimination of spills become imperative. 
   1.Innovative concepts for oil spill management.
   2.Novel devices for oil spill confrontation.
   3.An integrated framework for oil spill management.

Expected Results
Analysis and assessment tools that complete an integrated frame-
work for oil spill management system, including communications, 
logistical support and response tactics.
Design and proof of concept of autonomous elimination units for 
marine oil pollution 
(EU-MOPs).
An advanced structure for the dissemination of oil pollution response 
policies.

ABOUT EXPERIENCES WITH DEEP SEA INTERVENTION 
DURING ONE DECADE

H. Gerber (1), G. Clauss (2)
Technische Fachhochschule Berlin – University of Applied Sciences

FB VIII  Luxemburger Str. 10, D – 13353 Berlin
Technische Universität Berlin

Fak. V – ILS – Sekr. SG 17, Salzufer 17-19, D – 10587 Berlin

Introdcution
This contribution will deal with the long standing experience of a 
deep sea intervention system MODUS that has been developed by 
the authors groups for the deployment of heavy deep sea stations. 
This stations mainly operated by the partner INGV in Rome/Italy have 
the purpose to operate for a long term (one year) autonomously or to 
be linked to shore nodes.

Contents
It will be presented the complex process for the development of this 

technology with CAD design, CFD simulation, numerical simulation 
for the dynamic behaviour and the lab tests. This will be followed 
by the experiences with MODUS in the fi eld. MODUS has been used 
within several European projects such as GEOSTAR1, GEOSTAR2, 
ORION, BIODEEP. Moreover in the Italian projects SN#1, APLABES and 
MABEL. During this projects we have had more than 70 dives down 
to 4000 m in diff erent environments, like the Mediterrenean Sea and 
the Antarctic Sea. In the near future it will operate in the Atlantic Sea 
within NEAREST another European project. 
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fl ow. Common control structures include parallel and sequential ex-
ecution, repetitive structures (while, for, …), conditional structures 
(if-then-else, try-catch, …), etc. 
Figure 3 shows a control structure If-then-else. Both tasks and con-
trol structures are embedded between the Begin, Task achieved and 
Task not achieved places. For this reason, the control structures can 
sequence not only tasks but even other control structures.
Once the architecture-link section is defi ned, programing a mission 
is as easy as writing a piece of code using the available control struc-
tures and the previous defi ned tasks (Algorithm 1).

Mission{
  yaw = 0;
  while(yaw < 2*PI){
    AutoHeading(yaw, 60);
    parallel{ConstantVelocity(0.8, 60);}
          or{Monitor(distance > 2);}
    yaw = yaw + PI/2; 
    }
}
Algorithm 1: Example of a MCL mission.

4. Conclusions:
This is an ongoing project to design and implement a fl exible MCL 
easy to be tailored to diff erent AUV control architectures. A generic 
MCS based on Petri nets have been presented as well as the MCL 
used to defi ne the missions. The main goal of this project consist on 
providing the end user with a simple but powerful language for de-
scribing the AUV missions.
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