
IN
ST

R
U

M
EN

TA
TI

O
N

 V
IE

W
P

O
IN

T
Se

ss
io

ns

52

Figure 3. Results for a troublesome mission: (a) Random T2 (worst
result), (b) Connectivity and Bug-based T2 (black dot = start, red
dot = goal).

Mission RT2 CT2/BT2 Bug2

1 313.62 281.54 388.00

2 420.65 420.65 426.00

3 623.00 405.17 578.00

4 286.83 368.55 421.00

5 883.47 883.47 934.00

6 1586.71 1484.91 1672.00

7 663.82 246.85 797.00

Total (m) 4778.10 4091.19 5216.00

Table I. Comparison of the path lengths of Random T2 (RT2), Con-
nectivity T2 (CT2), Bug-based T2 (BT2) and Bug2.

5. Conclusions
A novel family of geometric algorithms of motion planning based
on potential fi elds and the traversability and tenacity principles have
been put forward. The T2 variant paths have resulted, on average, sig-
nifi cantly shorter than the ones of other algorithms for a representa-
tive set of missions. An extension of T2 strategies to three dimensions
is under development at the moment to take advantage of the 6 DOF
of AUVs.

6. References
[1] O. Khatib. “Real-time obstacle avoidance for manipulators and mobile
robots,” International Journal of Robotics Research, vol. 5, no. 1, pp. 90–98,
1986.
[2] Y. Koren and J. Borenstein. “Potential fi eld methods and their inherent limi-
tations for mobile robot navigation,” in Proc. 1991 Robotics and Automation
Conf., pp. 1398–1404.
[3] V. Lumelsky and A. Stepanov. “Path planning strategies for a point mobile
automaton moving amidst unknown obstacles of arbitrary shape,” Algorith-
mica, vol. 2, pp. 403–430, 1987.

DEFINING A MISSION CONTROL LANGUAGE

Narcis Palomeras, Pere Ridao and Marc Carreras
Univ. de Girona, Campus de Montilivi, Edifici P4 – Girona

npalomer@eia.udg.es

1. Introduction:
A mission controller is the part of the control architecture that is in
charge of defi ning a thread of tasks to be carried out in order to ful-
fi l a mission. Each task can be executed by means of some vehicle
primitives often referred as basic robot commands or behaviours.
The mission controller must defi ne how the mission is divided into a
set of tasks and how primitives are combined to fulfi l each task. The
development of a Mission Control System (MCS) for an Autonomous
Underwater Vehicle (AUV) lies at the intersection of a Discrete Event
System (DES), in charge of enabling/disabling basic actions when
some events are produced, and the Dynamic Control Continuous
System (DCS), used for every action to achieve a specifi c goal [1]. The

main objective of this project is defi ning a language able to describe
AUV missions in a simple but versatile way.

The Petri net formalism [2] has been chosen to describe the missions
that the MCS is going to execute, but instead of using graphic tools
to describe these Petri nets, our approach uses a Mission Control Lan-
guage (MCL), which compiles into a Petri net. The adoption of this
formalism helps us evaluating the net properties at compilation time
to detect, for instance, if possible inconsistent states can be reached.
Hence corrective actions can be adopted before actual execution.

This work is structured as follows, section 2 describes our proposal

M
4

The traversability principle suggests banning those directions where
an obstacle has been detected (fi gure 2(a)) and, in case the GoTo be-
haviour response results banned, generates two alternative obstacle-
free directions, generically labelled as left and right (fi gure 2(b)). On
the other hand, which direction, left or right, is taken by the robot is
decided according to the tenacity principle, in the sense that it tena-
ciously suggests taking the same direction that was selected the last
time. These two principles, although simple in concept, have proven
fully eff ective to solve trapping situations. As a consequence of the
application of the T2 principles, a global behaviour emerges by which
the robot circumnavigates the contour of an obstacle once it is aware
of its existence.

3. Three T2-based Algorithms
The application of the T2 principles require making two decisions
during the navigation: (1) in which direction the contour of an obsta-
cle is followed (i.e. which direction is taken the fi rst time the tenacity
principle is applied), and (2) at which moment the robot decides to
leave the contour of an obstacle to continue with the navigation to-
wards the goal point.

Random T2, Connectivity T2 and Bug-based T2 are three strategies
deriving from T2 which make the two aforementioned decisions in
diff erent ways, giving rise to diff erent performances and capabilities.
They are briefl y described in the following:
• In Random T2, the robot chooses randomly the direction to follow
the contour, while the contour is left as soon as the direction towards
the goal point becomes allowed.
• Connectivity T2 decides the direction to follow the contour accord-
ing to a minimum turn criterion and remembers which direction is
taken, in order to explore the other direction in case the goal point
is not reached. The contour of the obstacle is also left as soon as the
direction towards the goal point becomes allowed.
• Bug-based T2 also chooses the minimum turn direction to follow
the contour. As for the leaving to occur, either: (1) the navigation fi l-
ter must indicate there is a free-obstacle path towards the goal point
and this must be the fi rst time the robot leaves the obstacle at ap-
proximately that same position, or (2) the robot trajectory must cut
the line joining the start and goal points (M-line) and the distance
from the robot to the goal has to be shorter than the one associated
with the last time this condition was satisfi ed. Each time (1) is satis-
fi ed the M-line is redefi ned using the current robot position as the
start position.

4. Experimental Results
In order to show the eff ectiveness of the T2 strategies, fi gure 3 shows
simulation results for a maze-like environment, while table I provides
a comparison of path lengths with a well-known motion planning
algorithm called Bug2 [3] for a set of up to seven diff erent environ-
ments.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UPCommons. Portal del coneixement obert de la UPC

https://core.ac.uk/display/41780321?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IN
STR

U
M

EN
TA

TIO
N

 V
IEW

P
O

IN
T

Sessions

53

Figure 1: MCS connected to a particular Vehicle Architecture
through the AAL.

M
4

for a MCS. Section 3 presents how the MCL works. Finally, section 4
presents the conclusions.

2. A Generic Mission Control System:
Our intention has been to design the MCL as generic as possible and
to allow for an easily tailoring to diff erent control architectures. To
achieve this goal our MCS presents a clear interface with any par-
ticular vehicle control architecture based on Actions and Events. Be-
tween the MCS and the vehicle control architecture there is an Archi-
tecture Abstraction Layer (AAL) that adapts these Actions and Events
for every particular architecture and provides, moreover, provides
an expressions evaluator (with accessibility to all the vehicle internal
variables) as well as a set of timers (
Figure 1).
Actions in the MCS, provoke the execution of vehicle primitives with-
in the vehicle architecture or the evaluation of an expression or the
initialization of a timer within the AAL. Events, are used to notify any
thing that happens inside the vehicle architecture or the AAL (vehi-
cle primitive achievements, timeouts, vehicle exception, evaluation
results, …)
The AAL depends on the control architecture being used allowing
the MCS to remain architecture-independent. With the AAL, it is pos-
sible use this MCS approach in diff erent vehicles with diff erent con-
trol architectures.

Figure 2: Example of an AutoHeading Task.

3. Mission Control Language:
From the point of view of the MCS, a mission is just a Petri net that
evolves when some Events are received and being able to execute
a set of desired Actions. To describe a mission, MCL uses two diff er-
ent sections: the architecture-link and the mission itself. In the ar-
chitecture-link all the Actions and Events as well as Vehicle Variables
or Resources that are available from the MCS have to be defi ned to-
gether with their correspondence (Vehicle Primitives, Notifi cations,
Variables…). Tasks have to be defi ned also in this section. A task is de-
fi ned as a fl ow of states, where each state is characterised by a set of
enabled Vehicle Primitives and timers pursuing a set of related goals.
When these goals are achieved, the vehicle architecture notifi es the
AAL that sends diff erent Events. As a result, MCS changes its state
and executes a set of Actions. In our approach, this control execu-
tion is modelled with an ordinary Petri net extended as follows: (1)
Every transition has a set of events and a set of actions associated;
(2) a transition t is enabled if each input place p of t is marked with
1 token (we use ordinary Petri nets) but can fi re only if its associated
events are received. Finally, (3) when a transition t is fi red, in addition

Figure 3: Example of a control structure: If(Task1) then Task2 else

Task3.

to removing 1 token from each input place p of t, and adding 1 token
to each output place p of t, the set of associated actions is executed.
With these extensions it is possible to disambiguate the confl icts in
the Petri net by fi ring only the transitions whose events have been
received.

In order to illustrate how a task is implemented, let us consider the
Autoheading task shown in Figure 2. This is a very simple task involv-
ing only one Vehicle Primitive (KeepOrientation) and a timer. The
corresponding Petri net has a transition to enable the timer and the
KeepOrientation primitive (t1) and two transitions more (t2 and t3)
waiting for the events timeout expiration or orientation achieve-
ment. Places p3 and p4 are pure indicatives of the state in which the
Petri net is. Transitions t4 and t5 are used to deactivate the timer and
the KeepOrientation primitive.
To link diff erent tasks between them, control structures are intro-
duced. Control structures are Petri nets that defi ne the tasks control

IN
ST

R
U

M
EN

TA
TI

O
N

 V
IE

W
P

O
IN

T
Se

ss
io

ns

54

ELIMINATION UNITS FOR MARINE OIL POLLUTION (EU-MOP)
Jesús Carbajosa Waldo Rethemías
(CETEMAR Centro de Estudios Técnico Marítimos)

Introduction
This paper introduces a research project called EU-MOP, founded by
EU Commission under the 6th Frame Work Programme (DG-RTD),
that involves the design and evaluation of an intelligent robot system
to respond to oil spills and new spill management tools.
The R&D team consist of 13 multidisciplinary European partners,
everyone of which have an outstanding knowledge in their relevant
areas.

Background
Oil pollution either from marine accidents or routine ship opera-
tions is one of the major problems that threaten the marine environ-
ment. Eff orts in protecting the environment after an oil spill could
cost billions of euros in cleanup and subsequent damage costs, often
producing questionable results. The key factor for effi cient clean-
up operations is to develop an adequate structure focusing on the
confrontation of oil when is into the sea and diminish the impact on
nearby coasts.

Objectives
In fact there is a direct need for a renovation of anti-pollution meth-
odologies and equipment. Such a goal must be incorporated at all
hierarchical levels, taking the necessary legislative and surveillance
measures, therefore in-situ techniques that allow for the control and
elimination of spills become imperative.
 1.Innovative concepts for oil spill management.
 2.Novel devices for oil spill confrontation.
 3.An integrated framework for oil spill management.

Expected Results
Analysis and assessment tools that complete an integrated frame-
work for oil spill management system, including communications,
logistical support and response tactics.
Design and proof of concept of autonomous elimination units for
marine oil pollution
(EU-MOPs).
An advanced structure for the dissemination of oil pollution response
policies.

ABOUT EXPERIENCES WITH DEEP SEA INTERVENTION
DURING ONE DECADE

H. Gerber (1), G. Clauss (2)
Technische Fachhochschule Berlin – University of Applied Sciences

FB VIII Luxemburger Str. 10, D – 13353 Berlin
Technische Universität Berlin

Fak. V – ILS – Sekr. SG 17, Salzufer 17-19, D – 10587 Berlin

Introdcution
This contribution will deal with the long standing experience of a
deep sea intervention system MODUS that has been developed by
the authors groups for the deployment of heavy deep sea stations.
This stations mainly operated by the partner INGV in Rome/Italy have
the purpose to operate for a long term (one year) autonomously or to
be linked to shore nodes.

Contents
It will be presented the complex process for the development of this

technology with CAD design, CFD simulation, numerical simulation
for the dynamic behaviour and the lab tests. This will be followed
by the experiences with MODUS in the fi eld. MODUS has been used
within several European projects such as GEOSTAR1, GEOSTAR2,
ORION, BIODEEP. Moreover in the Italian projects SN#1, APLABES and
MABEL. During this projects we have had more than 70 dives down
to 4000 m in diff erent environments, like the Mediterrenean Sea and
the Antarctic Sea. In the near future it will operate in the Atlantic Sea
within NEAREST another European project.

M
4

fl ow. Common control structures include parallel and sequential ex-
ecution, repetitive structures (while, for, …), conditional structures
(if-then-else, try-catch, …), etc.
Figure 3 shows a control structure If-then-else. Both tasks and con-
trol structures are embedded between the Begin, Task achieved and
Task not achieved places. For this reason, the control structures can
sequence not only tasks but even other control structures.
Once the architecture-link section is defi ned, programing a mission
is as easy as writing a piece of code using the available control struc-
tures and the previous defi ned tasks (Algorithm 1).

Mission{
 yaw = 0;
 while(yaw < 2*PI){
 AutoHeading(yaw, 60);
 parallel{ConstantVelocity(0.8, 60);}
 or{Monitor(distance > 2);}
 yaw = yaw + PI/2;
 }
}
Algorithm 1: Example of a MCL mission.

4. Conclusions:
This is an ongoing project to design and implement a fl exible MCL
easy to be tailored to diff erent AUV control architectures. A generic
MCS based on Petri nets have been presented as well as the MCL
used to defi ne the missions. The main goal of this project consist on
providing the end user with a simple but powerful language for de-
scribing the AUV missions.

5.References:
[1] Marco, D.B., A.J. Healey and R.B. Mcghee (1996). Autonomous underwa-
ter vehicles: Hybrid control of mission and motion. Autonomous Robots 3,
169–186.
[2] Murata, T. (1989). Petri nets: Properties, analysis and applications. Proceed-
ings of the IEEE.

	REVISTA MARTECH 2007 52
	REVISTA MARTECH 2007 53
	REVISTA MARTECH 2007 54

