119 research outputs found

    Efficacy and Safety of Ertugliflozin in Patients With Type 2 Diabetes Mellitus and Established Cardiovascular Disease Treated With Metformin and Sulfonylurea

    Get PDF
    Abstract Introduction: Ertugliflozin (ERTU), a sodium-glucose cotransporter 2 (SGLT2) inhibitor, is approved as an adjunct to diet and exercise to improve glycemic control in patients with type 2 diabetes mellitus (T2DM). Aim: As a pre-specified sub-study of the Phase 3 VERTIS CV trial (NCT01986881), the efficacy and safety of ERTU were assessed in patients with T2DM and established atherosclerotic cardiovascular disease (ASCVD) inadequately controlled with metformin and sulfonylurea (SU). Methods: Patients with T2DM, established ASCVD, and HbA1c 7.0–10.5% on stable metformin (≥1500 mg/day) and SU doses as defined per protocol were randomized to once-daily ERTU (5 mg or 15 mg) or placebo. The primary sub-study objectives were to assess the effect of ERTU on HbA1c compared with placebo and to evaluate safety and tolerability during 18-week follow-up. Key secondary endpoints included proportion of patients achieving HbA1c <7%, fasting plasma glucose (FPG), body weight, and systolic blood pressure. Changes from baseline at Week 18 for continuous efficacy endpoints were assessed using a constrained longitudinal data analysis model. Results: Of the 8246 patients enrolled in the VERTIS CV trial, 330 patients were eligible for this sub-study (ERTU 5 mg, n=100; ERTU 15 mg, n=113; placebo, n=117). Patients had a mean (SD) age of 63.2 (8.4) years, T2DM duration 11.4 (7.4) years, estimated glomerular filtration rate 83.5 (17.8) mL/min/1.73 m2, and HbA1c 8.3% (1.0) (67.4 [10.6] mmol/mol). At Week 18, ERTU 5 mg and 15 mg were each associated with a significantly greater least squares mean (95% CI) HbA1c reduction from baseline versus placebo; the placebo-adjusted differences for ERTU 5 mg and 15 mg were –0.7% (–0.9, –0.4) and –0.8% (–1.0, –0.5), respectively (P<0.001). A higher proportion of patients in each ERTU group achieved HbA1c <7% relative to placebo (P<0.001). ERTU significantly reduced FPG and body weight (P<0.001, for each dose versus placebo), but not systolic blood pressure. Adverse events were reported in 48.0%, 54.9%, and 47.0% of patients in the ERTU 5 mg, 15 mg, and placebo groups, respectively. Genital mycotic infections were experienced by significantly higher proportions of male patients who received ERTU 5 mg and 15 mg (4.2% and 4.8%, respectively) versus placebo (0.0%; P≤0.05) and by a numerically, but not significantly, higher proportion of female patients who received ERTU 15 mg (10.3%) compared with placebo (3.8%) (P=0.36). The incidences of symptomatic hypoglycemia were 11.0% (5 mg), 12.4% (15 mg), and 7.7% (placebo), and of severe hypoglycemia 2.0% (5 mg), 1.8% (15 mg), and 0.9% (placebo). Conclusion: Among patients with T2DM and ASCVD, ERTU (5 mg and 15 mg) added to metformin and SU for 18 weeks improved glycemic control (HbA1c and FPG) and reduced body weight, and was generally well tolerated with a safety profile consistent with the SGLT2 inhibitor class

    Mapping replication dynamics in Trypanosoma brucei reveals a link with telomere transcription and antigenic variation

    Get PDF
    Survival of Trypanosoma brucei depends upon switches in its protective Variant Surface Glycoprotein (VSG) coat by antigenic variation. VSG switching occurs by frequent homologous recombination, which is thought to require locus-specific initiation. Here, we show that a RecQ helicase, RECQ2, acts to repair DNA breaks, including in the telomeric site of VSG expression. Despite this, RECQ2 loss does not impair antigenic variation, but causes increased VSG switching by recombination, arguing against models for VSG switch initiation through direct generation of a DNA double strand break (DSB). Indeed, we show DSBs inefficiently direct recombination in the VSG expression site. By mapping genome replication dynamics, we reveal that the transcribed VSG expression site is the only telomeric site that is early replicating – a differential timing only seen in mammal-infective parasites. Specific association between VSG transcription and replication timing reveals a model for antigenic variation based on replication-derived DNA fragility

    Targeted Cytotoxic Therapy Kills Persisting HIV Infected Cells During ART

    Get PDF
    Antiretroviral therapy (ART) can reduce HIV levels in plasma to undetectable levels, but rather little is known about the effects of ART outside of the peripheral blood regarding persistent virus production in tissue reservoirs. Understanding the dynamics of ART-induced reductions in viral RNA (vRNA) levels throughout the body is important for the development of strategies to eradicate infectious HIV from patients. Essential to a successful eradication therapy is a component capable of killing persisting HIV infected cells during ART. Therefore, we determined the in vivo efficacy of a targeted cytotoxic therapy to kill infected cells that persist despite long-term ART. For this purpose, we first characterized the impact of ART on HIV RNA levels in multiple organs of bone marrow-liver-thymus (BLT) humanized mice and found that antiretroviral drug penetration and activity was sufficient to reduce, but not eliminate, HIV production in each tissue tested. For targeted cytotoxic killing of these persistent vRNA+ cells, we treated BLT mice undergoing ART with an HIV-specific immunotoxin. We found that compared to ART alone, this agent profoundly depleted productively infected cells systemically. These results offer proof-of-concept that targeted cytotoxic therapies can be effective components of HIV eradication strategies

    BACH2 immunodeficiency illustrates an association between super-enhancers and haploinsufficiency.

    Get PDF
    The transcriptional programs that guide lymphocyte differentiation depend on the precise expression and timing of transcription factors (TFs). The TF BACH2 is essential for T and B lymphocytes and is associated with an archetypal super-enhancer (SE). Single-nucleotide variants in the BACH2 locus are associated with several autoimmune diseases, but BACH2 mutations that cause Mendelian monogenic primary immunodeficiency have not previously been identified. Here we describe a syndrome of BACH2-related immunodeficiency and autoimmunity (BRIDA) that results from BACH2 haploinsufficiency. Affected subjects had lymphocyte-maturation defects that caused immunoglobulin deficiency and intestinal inflammation. The mutations disrupted protein stability by interfering with homodimerization or by causing aggregation. We observed analogous lymphocyte defects in Bach2-heterozygous mice. More generally, we observed that genes that cause monogenic haploinsufficient diseases were substantially enriched for TFs and SE architecture. These findings reveal a previously unrecognized feature of SE architecture in Mendelian diseases of immunity: heterozygous mutations in SE-regulated genes identified by whole-exome/genome sequencing may have greater significance than previously recognized

    International AIDS Society global scientific strategy: towards an HIV cure 2016

    Get PDF
    Antiretroviral therapy is not curative. Given the challenges in providing lifelong therapy to a global population of more than 35 million people living with HIV, there is intense interest in developing a cure for HIV infection. The International AIDS Society convened a group of international experts to develop a scientific strategy for research towards an HIV cure. This Perspective summarizes the group's strategy

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
    corecore