125 research outputs found

    Using satellite data to help quantify Scottish greenhouse gas emissions

    Get PDF
    In line with the Paris Agreement, Scotland has committed to achieving net-zero emissions by 2045. To help meet this target, accurate and frequently updated knowledge of human-driven emissions is required, and robust monitoring is essential if we are to verify progress. At present, greenhouse gas (GHG) emissions for Scotland are published annually, approximately 18 months after the period to which they relate. The current approach combines annual production and usage statistics with estimates of how much carbon is emitted per unit measure of production and usage. An alternative approach is to look to the atmosphere. This study examines how satellite observations of the atmosphere could be used to build on existing modelling efforts and report GHG emissions well in advance of the present estimates. In this report, we describe the software we have developed to download and interpret publicly available satellite observations of tropospheric NO2, as a proxy for fossil fuel emissions of CO2 (ffCO2). The observations cover three spatial areas: onshore Scotland; the Scottish zone of the UK continental shelf; and the subset of the Scottish zone corresponding to the location of oil and gas platforms

    UK surface NO2 levels dropped by 42 % during the COVID-19 lockdown : Impact on surface O3

    Get PDF
    We report changes in surface nitrogen dioxide (NO2) across the UK during the COVID-19 pandemic when large and rapid emission reductions accompanied a nationwide lockdown (23 March-31 May 2020, inclusively), and compare them with values from an equivalent period over the previous 5 years. Data are from the Automatic Urban and Rural Network (AURN), which forms the basis of checking nationwide compliance with ambient air quality directives. We calculate that NO2 reduced by 42 %±9.8 % on average across all 126 urban AURN sites, with a slightly larger (48 %±9.5 %) reduction at sites close to the roadside (urban traffic). We also find that ozone (O3) increased by 11 % on average across the urban background network during the lockdown period. Total oxidant levels (OxCombining double low lineNO2+O3) increased only slightly on average (3.2 %±0.2 %), suggesting the majority of this change can be attributed to photochemical repartitioning due to the reduction in NOx. Generally, we find larger, positive Ox changes in southern UK cities, which we attribute to increased UV radiation and temperature in 2020 compared to previous years. The net effect of the NO2 and O3 changes is a sharp decrease in exceedances of the NO2 air quality objective limit for the UK, with only one exceedance in London in 2020 up until the end of May. Concurrent increases in O3 exceedances in London emphasize the potential for O3 to become an air pollutant of concern as NOx emissions are reduced in the next 10-20 years.

    CYberinfrastructure for COmparative effectiveness REsearch (CYCORE): improving data from cancer clinical trials

    Get PDF
    Improved approaches and methodologies are needed to conduct comparative effectiveness research (CER) in oncology. While cancer therapies continue to emerge at a rapid pace, the review, synthesis, and dissemination of evidence-based interventions across clinical trials lag in comparison. Rigorous and systematic testing of competing therapies has been clouded by age-old problems: poor patient adherence, inability to objectively measure the environmental influences on health, lack of knowledge about patients’ lifestyle behaviors that may affect cancer’s progression and recurrence, and limited ability to compile and interpret the wide range of variables that must be considered in the cancer treatment. This lack of data integration limits the potential for patients and clinicians to engage in fully informed decision-making regarding cancer prevention, treatment, and survivorship care, and the translation of research results into mainstream medical care. Particularly important, as noted in a 2009 report on CER to the President and Congress, the limited focus on health behavior-change interventions was a major hindrance in this research landscape (DHHS 2009). This paper describes an initiative to improve CER for cancer by addressing several of these limitations. The Cyberinfrastructure for Comparative Effectiveness Research (CYCORE) project, informed by the National Science Foundation’s 2007 report “Cyberinfrastructure Vision for 21st Century Discovery” has, as its central aim, the creation of a prototype for a user-friendly, open-source cyberinfrastructure (CI) that supports acquisition, storage, visualization, analysis, and sharing of data important for cancer-related CER. Although still under development, the process of gathering requirements for CYCORE has revealed new ways in which CI design can significantly improve the collection and analysis of a wide variety of data types, and has resulted in new and important partnerships among cancer researchers engaged in advancing health-related CI

    Interactions of the Totten Glacier with the Southern Ocean through multiple glacial cycles (IN2017-V01): Post-survey report

    Get PDF
    The authors wish to thank the CSIRO Marine National Facility (MNF) for its support in the form of sea time on RV Investigator, support personnel, scientific equipment and data management. All data and samples acquired on the voyage are made publicly available in accordance with MNF Policy. All raw and processed data acquired by MNF equipment on MNF voyages will be archived by MNF data support staff in the enduring CSIRO Data Access Portal, https://data.csiro.au. Metadata records will be made publicly available at http://www.marlin.csiro.au. Processed data and data products will be made publicly available through Data Trawler http://www.cmar.csiro.au/data/trawler/index.cfm, the MNF web data access tool http://www.cmar.csiro.au/data/underway/, and/or from national or world data centres most suitable for the dissemination of particular data types.Other Australian Program Support Smaller projects have attracted funding to support research activities post-cruise these include the following: 1. Australian and New Zealand IODP Committee (ANZIC) Special Analytical Support Grant. Project Title: Using ancient phytoplankton communities and genes to illuminate future ocean responses. Researchers involved: L. Armand, L. Armbrecht, M. Ostrowski, & S. George. 2. Australian Antarctic Division Australian Antarctic Science Grant (#4320). Project Title: Characterising East Antarctic seabed habitats. Researchers involved: Post, A.L., & Smith, J. 3. Australian Antarctic Division Australian Antarctic Science Grant (#4419). Project Title: Response of the Totten Glacier to past climate warming. Researchers involved: Noble, T., Armand, L., Chase, Z., & Halpin, J.The Sabrina Sea Floor Survey was a major marine geoscience expedition to the Antarctic margin which took place between 14 January and 7 March 2017. It sailed on the Australian Marine National Facility vessel RV Investigator. This document describes survey activities, data collected on the ship and important metadata. Some preliminary results are included and the location of samples and data sets reported for future use. The report also provides information on data ownership and acknowledgement for future use and publication. It is intended as an aid to future research and use of results and has not been rigorously edited and peer-reviewed.Australian Research Council (DP170100557), Australian Antarctic Science Grant Program (AAS #4333), Italian Antarctic program support PNRA TYTAN Project (PdR 14_00119), Spanish Ministry of Economy and Competitivity (MINECO) (CTM2015-60451-C2-1-P & CTM2015-60451-C2-2-P), United States National Science Foundation's Polar Program - Antarctic Integrated System Science. #1143834, 1143836, 1143837, 1143843, 1313826

    Multiple and Multidimensional life transitions in the context of life-limiting health conditions:Longitudinal study focussing on perspectives of Young Adults, Families and Professionals

    Get PDF
    Background: There is a dearth of literature that investigates life transitions of young adults (YAs) with life-limiting conditions, families and professionals. The scant literature that is available has methodological limitations, including not listening to the voice of YAs, collecting data retrospectively, at one time point, from one group’s perspective and single case studies. The aim of this study was to address the gaps found in our literature review and provide a clearer understanding of the multiple and multi-dimensional life transitions experienced by YAs and significant others, over a period of time. Methods: This qualitative study used a longitudinal design and data were collected using semi-structured interviews over a 6-month period at 3 time points. Participants included 12 YAs with life-limiting conditions and their nominated significant others (10 family members and 11 professionals). Data were analysed using a thematic analysis approach. Results: Life transitions of YA and significant others are complex; they experience multiple and multi-dimensional transitions across several domains. The findings challenge the notion that all life transitions are triggered by health transitions of YAs, and has highlighted environmental factors (attitudinal and systemic) that can be changed to facilitate smoother transitions in various aspects of their lives. Conclusions: This study makes a unique and significant contribution to literature. It provides evidence and rich narratives for policy makers and service providers to change policies and practices that are in line with the needs of YAs with life-limiting conditions as they transition to adulthood. Families and professionals have specific training needs that have not yet been met fully

    Highly Sensitive and Specific Detection of Rare Variants in Mixed Viral Populations from Massively Parallel Sequence Data

    Get PDF
    Viruses diversify over time within hosts, often undercutting the effectiveness of host defenses and therapeutic interventions. To design successful vaccines and therapeutics, it is critical to better understand viral diversification, including comprehensively characterizing the genetic variants in viral intra-host populations and modeling changes from transmission through the course of infection. Massively parallel sequencing technologies can overcome the cost constraints of older sequencing methods and obtain the high sequence coverage needed to detect rare genetic variants (<1%) within an infected host, and to assay variants without prior knowledge. Critical to interpreting deep sequence data sets is the ability to distinguish biological variants from process errors with high sensitivity and specificity. To address this challenge, we describe V-Phaser, an algorithm able to recognize rare biological variants in mixed populations. V-Phaser uses covariation (i.e. phasing) between observed variants to increase sensitivity and an expectation maximization algorithm that iteratively recalibrates base quality scores to increase specificity. Overall, V-Phaser achieved >97% sensitivity and >97% specificity on control read sets. On data derived from a patient after four years of HIV-1 infection, V-Phaser detected 2,015 variants across the ∼10 kb genome, including 603 rare variants (<1% frequency) detected only using phase information. V-Phaser identified variants at frequencies down to 0.2%, comparable to the detection threshold of allele-specific PCR, a method that requires prior knowledge of the variants. The high sensitivity and specificity of V-Phaser enables identifying and tracking changes in low frequency variants in mixed populations such as RNA viruses

    GWAS on longitudinal growth traits reveals different genetic factors influencing infant, child, and adult BMI

    Get PDF
    Early childhood growth patterns are associated with adult health, yet the genetic factors and the developmental stages involved are not fully understood. Here, we combine genome-wide association studies with modeling of longitudinal growth traits to study the genetics of infant and child growth, followed by functional, pathway, genetic correlation, risk score, and colocalization analyses to determine how developmental timings, molecular pathways, and genetic determinants of these traits overlap with those of adult health. We found a robust overlap between the genetics of child and adult body mass index (BMI), with variants associated with adult BMI acting as early as 4 to 6 years old. However, we demonstrated a completely distinct genetic makeup for peak BMI during infancy, influenced by variation at the LEPR/LEPROT locus. These findings suggest that different genetic factors control infant and child BMI. In light of the obesity epidemic, these findings are important to inform the timing and targets of prevention strategies
    corecore