2,592 research outputs found

    The Leading Edge 250: Oblique wing aircraft configuration project, volume 4

    Get PDF
    The design of a high speed transport aircraft using the oblique wing concept as a part of the High Speed Civil Transport (HSCT) aircraft study is the Leading Edge 250 capable of travelling at Mach 4 with 250 passengers and has a 6,500 nautical mile range. Its innovation lies within its use of the unconventional oblique wing to provide efficient flight at any Mach number. Wave drag is kept to a minimum at high speed, while high lift is attained during critical takeoff and landing maneuvers by varying the sweep of the wing

    Editorial

    Get PDF

    Polyethylene Glycol Camouflaged Earthworm Hemoglobin.

    Get PDF
    Nearly 21 million components of blood and whole blood and transfused annually in the United States, while on average only 13.6 million units of blood are donated. As the demand for Red Blood Cells (RBCs) continues to increase due to the aging population, this deficit will be more significant. Despite decades of research to develop hemoglobin (Hb) based oxygen (O2) carriers (HBOCs) as RBC substitutes, there are no products approved for clinical use. Lumbricus terrestris erythrocruorin (LtEc) is the large acellular O2 carrying protein complex found in the earthworm Lumbricus terrestris. LtEc is an extremely stable protein complex, resistant to autoxidation, and capable of transporting O2 to tissue when transfused into mammals. These characteristics render LtEc a promising candidate for the development of the next generation HBOCs. LtEc has a short half-life in circulation, limiting its application as a bridge over days, until blood became available. Conjugation with polyethylene glycol (PEG-LtEc) can extend LtEc circulation time. This study explores PEG-LtEc pharmacokinetics and pharmacodynamics. To study PEG-LtEc pharmacokinetics, hamsters instrumented with the dorsal window chamber were subjected to a 40% exchange transfusion with 10 g/dL PEG-LtEc or LtEc and followed for 48 hours. To study the vascular response of PEG-LtEc, hamsters instrumented with the dorsal window chamber received multiple infusions of 10 g/dL PEG-LtEc or LtEc solution to increase plasma LtEc concentration to 0.5, then 1.0, and 1.5 g/dL, while monitoring the animals' systemic and microcirculatory parameters. Results confirm that PEGylation of LtEc increases its circulation time, extending the half-life to 70 hours, 4 times longer than that of unPEGylated LtEc. However, PEGylation increased the rate of LtEc oxidation in vivo. Vascular analysis verified that PEG-LtEc showed the absence of microvascular vasoconstriction or systemic hypertension. The molecular size of PEG-LtEc did not change the colloid osmotic pressure or blood volume expansion capacity compared to LtEc, due to LtEc's already large molecular size. Taken together, these results further encourage the development of PEG-LtEc as an O2 carrying therapeutic

    Fractionation of human red blood cells based on intrinsic magnetization

    Get PDF
    Red blood cell (RBC) transfusion is clinically used to treat hemodynamic instability and O2 carrying deficits in patients with acute blood loss, and patients with chronic anemia caused by bone marrow failure/suppression. Currently, cold storage of human RBCs (hRBCs) can preserve hRBCs for a maximum of six weeks (i.e. 42 days), set by the United States Food and Drug Administration (US FDA). However, as stored RBCs age, they undergo biochemical and biophysical changes that are often referred to as the storage lesion, which decreases the efficacy of transfusion while increasing the risk for transfusion-associated adverse effects. It is well known that upon transfusion of stored RBCs, there is a population of RBCs (i.e. healthy RBCs) that circulate for more than 24 hours, and another smaller population (i.e. damaged RBCs) that are cleared within 24 hours post transfusion. This population of cells destined to be cleared quickly can be higher than 25% in units stored for a mean of 30 days. The objective of our current project is to remove aged RBCs based on hemoglobin content. Under the influence of ultra-high magnetic fields and gradients, we have demonstrated that it is possible to fractionate RBCs into multiple factions based solely on difference in the intrinsic magnetization of the deoxygenated form of hemoglobin inside the RBCs (i.e. labeless separation). We hypothesize for our currently funded National Institute of Heart Lung and Blood project that healthy RBCs with higher Hb content correlate with longer half lives in transfused animal models than unhealthy RBCs which have lost some of their hemoglobin. In addition, material balances are being performed to track the hemoglobin molecules that are lost during the extended periods of storage. This work will reveal the mechanism behind the lost hemoglobin during RBC storage, deepen the knowledge about aged RBCs and RBC-associated exosomes, and facilitate bulk separation of RBCs without labeling the cells. Therefore, it could be clinically beneficial if the damaged RBCs in any unit of RBCs could be separated leaving a population of only healthy RBCs behind for transfusion. When a recipient is transfused with a dose of RBCs that overwhelms their circulatory system’s ability to compensate for the increased intravascular volume, heart failure can ensue. This condition is known as Transfusion Associated Circulatory Overload (TACO). It is the second leading cause of death related to transfusion reported to the FDA

    Down Selection of Polymerized Bovine Hemoglobins for Use as Oxygen Releasing Therapeutics in a Guinea Pig Model

    Get PDF
    Editor's Highlight: The development of hemoglobin-based oxygen carriers (HBOCs) as a replacement for whole-blood transfusions has been impeded by their systemic toxicity. This paper presents data from a series of HBOCs, demonstrating one candidate that meets predetermined safety criteria. This approach may allow the development of an acceptable blood substitute for human us

    The new IL-1 family member IL-1F8 stimulates production of inflammatory mediators by synovial fibroblasts and articular chondrocytes

    Get PDF
    Six novel members of the IL-1 family of cytokines were recently identified, primarily through the use of DNA database searches for IL-1 homologues, and were named IL-1F5 to IL-1F10. In the present study, we investigated the effect of IL-1F8 on primary human joint cells, and examined the expression of the new IL-1 family members in human and mouse joints. Human synovial fibroblasts (hSFs) and human articular chondrocytes (hACs) expressed the IL-1F8 receptor (IL-1Rrp2) and produced pro-inflammatory mediators in response to recombinant IL-1F8. IL-1F8 mRNA expression was increased in hSFs upon stimulation with proinflammatory cytokines, whereas in hACs IL-1F8 mRNA expression was constitutive. However, IL-1F8 protein was undetectable in hSF and hAC culture supernatants. Furthermore, although IL-1β protein levels were increased in inflamed human and mouse joint tissue, IL-1F8 protein levels were not. IL-1F8 levels in synovial fluids were similar to or lower than those in matched serum samples, suggesting that the joint itself is not a major source of IL-1F8. Serum levels of IL-1F8 were similar in healthy donors, and patients with rheumatoid arthritis, osteoarthritis and septic shock, and did not correlate with inflammatory status. Interestingly however, we observed high IL-1F8 levels in several serum samples in all groups. In conclusion, IL-1F8 exerts proinflammatory effects in primary human joint cells. Joint and serum IL-1F8 protein levels did not correlate with inflammation, but they were high in some human serum samples tested, including samples from patients with rheumatoid arthritis. It remains to be determined whether circulating IL-1F8 can contribute to joint inflammation in rheumatoid arthritis

    Efficient genome editing in hematopoietic stem cells with helper-dependent Ad5/35 vectors expressing site-specific endonucleases under microRNA regulation

    Get PDF
    Genome editing with site-specific endonucleases has implications for basic biomedical research as well as for gene therapy. We generated helper-dependent, capsid-modified adenovirus (HD-Ad5/35) vectors for zinc-finger nuclease (ZFN)- or transcription activator-like effector nuclease (TALEN)-mediated genome editing in human CD34+ hematopoietic stem cells (HSCs) from mobilized adult donors. The production of these vectors required that ZFN and TALEN expression in HD-Ad5/35 producer 293-Cre cells was suppressed. To do this, we developed a microRNA (miRNA)-based system for regulation of gene expression based on miRNA expression profiling of 293-Cre and CD34+ cells. Using miR-183-5p and miR-218-5p based regulation of transgene gene -expression, we first produced an HD-Ad5/35 vector expressing a ZFN specific to the HIV coreceptor gene ccr5. We demonstrated that HD-Ad5/35. ZFNmiR vector conferred ccr5 knock out in primitive HSC (i.e., long-term culture initiating cells and NOD/SCID repopulating cells). The ccr5 gene disruption frequency achieved in engrafted HSCs found in the bone marrow of transplanted mice is clinically relevant for HIV therapy considering that these cells can give rise to multiple lineages, including all the lineages that represent targets and reservoirs for HIV. We produced a second HD-Ad5/35 vector expressing a TALEN targeting the DNase hypersensitivity region 2 (HS2) within the globin locus control region. This vector has potential for targeted gene correction in hemoglobinopathies. The miRNA regulated HD-Ad5/35 vector platform for expression of site-specific endonucleases has numerous advantages over currently used vectors as a tool for genome engineering of HSCs for therapeutic purposes.
    corecore