292 research outputs found

    Computational approaches for modeling human intestinal absorption and permeability

    Get PDF
    Human intestinal absorption (HIA) is an important roadblock in the formulation of new drug substances. Computational models are needed for the rapid estimation of this property. The measurements are determined via in vivo experiments or in vitro permeability studies. We present several computational models that are able to predict the absorption of drugs by the human intestine and the permeability through human Caco-2 cells. The training and prediction sets were derived from literature sources and carefully examined to eliminate compounds that are actively transported. We compare our results to models derived by other methods and find that the statistical quality is similar. We believe that models derived from both sources of experimental data would provide greater consistency in predictions. The performance of several QSPR models that we investigated to predict outside the training set for either experimental property clearly indicates that caution should be exercised while applying any of the models for quantitative predictions. However, we are able to show that the qualitative predictions can be obtained with close to a 70% success rate

    Transcriptional Activation of REST by Sp1 in Huntington's Disease Models

    Get PDF
    In Huntington's disease (HD), mutant huntingtin (mHtt) disrupts the normal transcriptional program of disease neurons by altering the function of several gene expression regulators such as Sp1. REST (Repressor Element-1 Silencing Transcription Factor), a key regulator of neuronal differentiation, is also aberrantly activated in HD by a mechanism that remains unclear. Here, we show that the level of REST mRNA is increased in HD mice and in NG108 cells differentiated into neuronal-like cells and expressing a toxic mHtt fragment. Using luciferase reporter gene assay, we delimited the REST promoter regions essential for mHtt-mediated REST upregulation and found that they contain Sp factor binding sites. We provide evidence that Sp1 and Sp3 bind REST promoter and interplay to fine-tune REST transcription. In undifferentiated NG108 cells, Sp1 and Sp3 have antagonistic effect, Sp1 acting as an activator and Sp3 as a repressor. Upon neuronal differentiation, we show that the amount and ratio of Sp1/Sp3 proteins decline, as does REST expression, and that the transcriptional role of Sp3 shifts toward a weak activator. Therefore, our results provide new molecular information to the transcriptional regulation of REST during neuronal differentiation. Importantly, specific knockdown of Sp1 abolishes REST upregulation in NG108 neuronal-like cells expressing mHtt. Our data together with earlier reports suggest that mHtt triggers a pathogenic cascade involving Sp1 activation, which leads to REST upregulation and repression of neuronal genes

    Soil resource supply influences faunal size–specific distributions in natural food webs

    Get PDF
    The large range of body-mass values of soil organisms provides a tool to assess the ecological organization of soil communities. The goal of this paper is to identify graphical and quantitative indicators of soil community composition and ecosystem functioning, and to illustrate their application to real soil food webs. The relationships between log-transformed mass and abundance of soil organisms in 20 Dutch meadows and heathlands were investigated. Using principles of allometry, maximal use can be made of ecological theory to build and explain food webs. The aggregate contribution of small invertebrates such as nematodes to the entire community is high under low soil phosphorus content and causes shifts in the mass–abundance relationships and in the trophic structures. We show for the first time that the average of the trophic link lengths is a reliable predictor for assessing soil fertility responses. Ordered trophic link pairs suggest a self-organizing structure of food webs according to resource availability and can predict environmental shifts in ecologically meaningful ways

    Effects and safety of rituximab in systemic sclerosis: An analysis from the European Scleroderma Trial and Research (EUSTAR) group

    Get PDF
    Objectives: To assess the effects of Rituximab (RTX) on skin and lung fibrosis in patients with systemic sclerosis (SSc) belonging to the European Scleroderma Trial and Research (EUSTAR) cohort and using a nested case-control design. Methods: Inclusion criteria were fulfilment of American College of Rheumatology classification criteria for SSc, treatment with RTX and availability of follow-up data. RTX-treated patients were matched with control patients from the EUSTAR database not treated with RTX. Matching parameters for skin/lung fibrosis were the modified Rodnan Skin Score (mRSS), forced vital capacity (FVC), follow-up duration, scleroderma subtype, disease duration and immunosuppressive co-treatment. The primary analysis was mRSS change from baseline to follow-up in the RTX group compared with the control group. Secondary analyses included change of FVC and safety measures. Results: 63 patients treated with RTX were included in the analysis. The case-control analysis in patients with severe diffuse SSc showed that mRSS changes were larger in the RTX group versus matched controls (N=25; -24.0±5.2% vs-7.7±4.3%; p=0.03). Moreover, in RTX-treated patients, the mean mRSS was significantly reduced at follow-up compared with baseline (26.6±1.4 vs 20.3±1.8; p=0.0001). In addition, in patients with interstitial lung disease, RTX prevented significantly the further decline of FVC compared with matched controls (N=9; 0.4±4.4% vs-7.7±3.6%; p=0.02). Safety measures showed a good profile consistent with previous studies in autoimmune rheumatic diseases. Conclusions: The comparison of RTX treated versus untreated matched-control SSc patients from the EUSTAR cohort demonstrated improvement of skin fibrosis and prevention of worsening lung fibrosis, supporting the therapeutic concept of B cell inhibition in SSc

    Introduction of oral vitamin D supplementation and the rise of the allergy pandemic

    Get PDF
    The history of the allergy pandemic is well documented, enabling us to put the vitamin D hypothesis into its historical context. The purpose of this study is to compare the prevalence of rickets, vitamin D supply, and allergy prevalence at 50-year intervals by means of a retrospective analysis of the literature since 1880

    Innate Signaling in Otitis Media: Pathogenesis and Recovery

    Get PDF
    Otitis media (OM) is the most prevalent childhood disease in developed countries. Involvement of innate immunity mediated by Toll-like receptors (TLRs) in OM has been implicated primarily in cell lines and by association studies of innate immune gene polymorphisms with OM prevalence. However, the precise role of innate immunity in OM is incompletely understood. We review recent research that has advanced our understanding of how innate immunity in the middle ear is mediated by the interaction of pathogen molecules with receptors such as the TLRs, leading to the activation of adaptor molecules and production of proinflammatory cytokines. TLR genes and signaling molecules are upregulated in OM in a murine model. Deletion of several key innate immune genes results in persistent OM in mice, coupled with an inability to clear bacterial infection from the middle ear. It is concluded that an intact innate immune signaling system is critical to recovery from bacterial OM

    Species-Area Relationships Are Controlled by Species Traits

    Get PDF
    The species-area relationship (SAR) is one of the most thoroughly investigated empirical relationships in ecology. Two theories have been proposed to explain SARs: classical island biogeography theory and niche theory. Classical island biogeography theory considers the processes of persistence, extinction, and colonization, whereas niche theory focuses on species requirements, such as habitat and resource use. Recent studies have called for the unification of these two theories to better explain the underlying mechanisms that generates SARs. In this context, species traits that can be related to each theory seem promising. Here we analyzed the SARs of butterfly and moth assemblages on islands differing in size and isolation. We tested whether species traits modify the SAR and the response to isolation. In addition to the expected overall effects on the area, traits related to each of the two theories increased the model fit, from 69% up to 90%. Steeper slopes have been shown to have a particularly higher sensitivity to area, which was indicated by species with restricted range (slope  = 0.82), narrow dietary niche (slope  = 0.59), low abundance (slope  = 0.52), and low reproductive potential (slope  = 0.51). We concluded that considering species traits by analyzing SARs yields considerable potential for unifying island biogeography theory and niche theory, and that the systematic and predictable effects observed when considering traits can help to guide conservation and management actions

    Identification of novel small molecules that inhibit STAT3-dependent transcription and function

    Get PDF
    Activation of Signal Transducer and Activator of Transcription 3 (STAT3) has been linked to several processes that are critical for oncogenic transformation, cancer progression, cancer cell proliferation, survival, drug resistance and metastasis. Inhibition of STAT3 signaling has shown a striking ability to inhibit cancer cell growth and therefore, STAT3 has become a promising target for anti-cancer drug development. The aim of this study was to identify novel inhibitors of STAT-dependent gene transcription. A cellular reporter-based system for monitoring STAT3 transcriptional activity was developed which was suitable for high-throughput screening (Z’ = 0,8). This system was used to screen a library of 28,000 compounds (the ENAMINE Drug-Like Diversity Set). Following counter-screenings and toxicity studies, we identified four hit compounds that were subjected to detailed biological characterization. Of the four hits, KI16 stood out as the most promising compound, inhibiting STAT3 phosphorylation and transcriptional activity in response to IL6 stimulation. In silico docking studies showed that KI16 had favorable interactions with the STAT3 SH2 domain, however, no inhibitory activity could be observed in the STAT3 fluorescence polarization assay. KI16 inhibited cell viability preferentially in STAT3-dependent cell lines. Taken together, using a targeted, cell-based approach, novel inhibitors of STAT-driven transcriptional activity were discovered which are interesting leads to pursue further for the development of anti-cancer therapeutic agents

    Pathogen Recognition Receptor Signaling Accelerates Phosphorylation-Dependent Degradation of IFNAR1

    Get PDF
    An ability to sense pathogens by a number of specialized cell types including the dendritic cells plays a central role in host's defenses. Activation of these cells through the stimulation of the pathogen-recognition receptors induces the production of a number of cytokines including Type I interferons (IFNs) that mediate the diverse mechanisms of innate immunity. Type I IFNs interact with the Type I IFN receptor, composed of IFNAR1 and IFNAR2 chains, to mount the host defense responses. However, at the same time, Type I IFNs elicit potent anti-proliferative and pro-apoptotic effects that could be detrimental for IFN-producing cells. Here, we report that the activation of p38 kinase in response to pathogen-recognition receptors stimulation results in a series of phosphorylation events within the IFNAR1 chain of the Type I IFN receptor. This phosphorylation promotes IFNAR1 ubiquitination and accelerates the proteolytic turnover of this receptor leading to an attenuation of Type I IFN signaling and the protection of activated dendritic cells from the cytotoxic effects of autocrine or paracrine Type I IFN. In this paper we discuss a potential role of this mechanism in regulating the processes of innate immunity
    corecore