53 research outputs found
Targeting a phospho-STAT3-miRNAs pathway improves vesicular hepatic steatosis in an in vitro and in vivo model
Non-alcoholic fatty liver disease (NAFLD) is a leading cause of chronic liver disease. Although genetic predisposition and epigenetic factors contribute to the development of NAFLD, our understanding of the molecular mechanism involved in the pathogenesis of the disease is still emerging. Here we investigated a possible role of a microRNAs-STAT3 pathway in the induction of hepatic steatosis. Differentiated HepaRG cells treated with the fatty acid sodium oleate (fatty dHepaRG) recapitulated features of liver vesicular steatosis and activated a cell-autonomous inflammatory response, inducing STAT3-Tyrosine-phosphorylation. With a genome-wide approach (Chromatin Immunoprecipitation Sequencing), many phospho-STAT3 binding sites were identified in fatty dHepaRG cells and several STAT3 and/or NAFLD-regulated microRNAs showed increased expression levels, including miR-21. Innovative CARS (Coherent Anti-Stokes Raman Scattering) microscopy revealed that chemical inhibition of STAT3 activity decreased lipid accumulation and deregulated STAT3-responsive microRNAs, including miR-21, in lipid overloaded dHepaRG cells. We were able to show in vivo that reducing phospho-STAT3-miR-21 levels in C57/BL6 mice liver, by long-term treatment with metformin, protected mice from aging-dependent hepatic vesicular steatosis. Our results identified a microRNAs-phosphoSTAT3 pathway involved in the development of hepatic steatosis, which may represent a molecular marker for both diagnosis and therapeutic targeting
Next-generation risk assessment of chemicals – rolling out a human-centric testing strategy to drive 3R implementation: the RISK-HUNT3R project perspective
In many industrial sectors, there is a need for reliable ways to evaluate the safety of chemicals with methods anchored to human biology and pathology. For this purpose, many animal-free new approach methods (NAMs) have been developed and implemented in various stages of risk assessment. Now it is time to assemble individual NAMs into a comprehensive next-generation risk assessment (NGRA) strategy. The European Horizon 2020 RISK-HUNT3R project ("Risk assessment of chemicals integrating human-centric next-generation testing strategies promoting the 3Rs") has been designed to promote a combination of computational toxicology, in vitro toxicology, and systems biology. It is assumed that this approach will lead to faster and more accurate risk assessment procedures. The RISK-HUNT3R NGRA strategy will be developed to address the implementation of a comprehensive NAM toolbox into the regulatory framework. Critical conceptual approaches of the project include i) the integration of human-relevant data on biotransformation and elimination, ii) the translation of high-content mode-of-action datasets into predictions of adverse outcomes, iii) development of quantitative adverse outcome pathways (qAOPs), and iv) quantification of uncertainties associated with the predictions based on NGRA strategies. Many of the project steps will be used iteratively to generate datasets with sufficient quality and certainty for NGRA. Scientists and regulators will work together on case studies to evaluate NAMs' practical applicability and the strategies to combine information therefrom. Here we delineate how the strategy will be deployed to establish an overall NGRA framework for chemicals, pesticides, food additives, and drugs.Toxicolog
Long non-coding MIR205HG depletes Hsa-miR-590-3p leading to unrestrained proliferation in head and neck squamous cell carcinoma
Over 70% of head & neck squamous cell carcinoma (HNSCC) patients carry TP53 oncogenic mutations. Here we studied the role of specific tumor-derived mutant p53 proteins in the aberrant transcription of long non-coding (lnc) MIR205HG gene in head and neck cancer cells. Methods: To understand the role of lncMIR205HG, that we showed to be transcriptionally regulated by mutant p53 in HNSCC, we have employed siRNA and shRNA in CAL27 and FaDu HNSCC cell lines to suppress p53 gene expression in ChIP assays and RT-qPCR. We validated our findings in a cohort of 522 HNSCC patients from The Cancer Genome Atlas Data Portal (TCGA). We further evaluated our results in 63 HNSCC tumor samples collected at our institute, 32 of which were characterized by mutated TP53 (missense mutations) while 31 were characterized by wild-type TP53. Results: Maturation of pre-MIR205HG transcript produces two non-coding RNAs, lncMIR205HG and hsa-miR-205-5p. Down-regulation of lncMIR205HG expression significantly reduced cell proliferation, cell migration and clonogenic activity of head and neck cancer cells. Expression of MIR205HG was significantly increased in HNSCC with mutated TP53 when compared with matched non-tumoral tissues. Furthermore, MIR205HG expression levels were significantly higher in tumoral samples with mutant p53 than in tumoral tissues expressing wild-type p53. Mechanistically, MIR205HG depletes endogenous miR-590-3p leading to increased cyclin B, cdk1, and YAP protein expression. Conclusions: Taken together, these findings identify a transcriptional and post-transcriptional molecular network that includes mutant p53 protein, lncMIR205HG, YAP, and other proliferation-related genes, which are enriched in HNSCC patients with poor prognosis
Acceptance criteria for new approach methods in toxicology and human health-relevant life science research - part I
Every test procedure, scientific and non-scientific, has inherent uncertainties, even when performed according to a standard operating procedure (SOP). In addition, it is prone to errors, defects, and mistakes introduced by operators, laboratory equipment, or materials used. Adherence to an SOP and comprehensive validation of the test method cannot guarantee that each test run produces data within the acceptable range of variability and with the precision and accuracy determined during the method validation. We illustrate here (part I) why controlling the validity of each test run is an important element of experimental design. The definition and application of acceptance criteria (AC) for the validity of test runs is important for the setup and use of test methods, particularly for the use of new approach methods (NAM) in toxicity testing. AC can be used for decision rules on how to handle data, e.g., to accept the data for further use (AC fulfilled) or to reject the data (AC not fulfilled). The adherence to AC has important requirements and consequences that may seem surprising at first sight: (i) AC depend on a test method's objectives, e.g., on the types/concentrations of chemicals tested, the regulatory context, the desired throughput; (ii) AC are applied and documented at each test run, while validation of a method (including the definition of AC) is only performed once; (iii) if AC are altered, then the set of data produced by a method can change. AC, if missing, are the blind spot of quality assurance: Test results may not be reliable and comparable. The establishment and uses of AC will be further detailed in part II of this series.Toxicolog
Control of replication stress and mitosis in colorectal cancer stem cells through the interplay of PARP1, MRE11 and RAD51
Cancer stem cells (CSCs) are tumor subpopulations driving disease development, progression, relapse and therapy resistance, and their targeting ensures tumor eradication. CSCs display heterogeneous replication stress (RS), but the functionality/relevance of the RS response (RSR) centered on the ATR-CHK1 axis is debated. Here, we show that the RSR is efficient in primary CSCs from colorectal cancer (CRC-SCs), and describe unique roles for PARP1 and MRE11/RAD51. First, we demonstrated that PARP1 is upregulated in CRC-SCs resistant to several replication poisons and RSR inhibitors (RSRi). In these cells, PARP1 modulates replication fork speed resulting in low constitutive RS. Second, we showed that MRE11 and RAD51 cooperate in the genoprotection and mitosis execution of PARP1-upregulated CRC-SCs. These roles represent therapeutic vulnerabilities for CSCs. Indeed, PARP1i sensitized CRC-SCs to ATRi/CHK1i, inducing replication catastrophe, and prevented the development of resistance to CHK1i. Also, MRE11i + RAD51i selectively killed PARP1-upregulated CRC-SCs via mitotic catastrophe. These results provide the rationale for biomarker-driven clinical trials in CRC using distinct RSRi combinations
G × E interactions as a basis for toxicological uncertainty
To transfer toxicological findings from model systems, e.g. animals, to humans, standardized safety factors are applied to account for intra-species and inter-species variabilities. An alternative approach would be to measure and model the actual compound-specific uncertainties. This biological concept assumes that all observed toxicities depend not only on the exposure situation (environment = E), but also on the genetic (G) background of the model (G × E). As a quantitative discipline, toxicology needs to move beyond merely qualitative G × E concepts. Research programs are required that determine the major biological variabilities affecting toxicity and categorize their relative weights and contributions. In a complementary approach, detailed case studies need to explore the role of genetic backgrounds in the adverse effects of defined chemicals. In addition, current understanding of the selection and propagation of adverse outcome pathways (AOP) in different biological environments is very limited. To improve understanding, a particular focus is required on modulatory and counter-regulatory steps. For quantitative approaches to address uncertainties, the concept of “genetic” influence needs a more precise definition. What is usually meant by this term in the context of G × E are the protein functions encoded by the genes. Besides the gene sequence, the regulation of the gene expression and function should also be accounted for. The widened concept of past and present “gene expression” influences is summarized here as Ge. Also, the concept of “environment” needs some re-consideration in situations where exposure timing (Et) is pivotal: prolonged or repeated exposure to the insult (chemical, physical, life style) affects Ge This implies that it changes the model system. The interaction of Ge with Et might be denoted as Ge × Et We provide here general explanations and specific examples for this concept and show how it could be applied in the context of New Approach Methodologies (NAM)
The Rise of Three Rs Centres and Platforms in Europe*
Public awareness and discussion about animal experiments and replacement methods has greatly increased in recent years. The term 'the Three Rs', which stands for the Replacement, Reduction and Refinement of animal experiments, is inseparably linked in this context. A common goal within the Three Rs scientific community is to develop predictive non-animal models and to better integrate all available data from in vitro, in silico and omics technologies into regulatory decision-making processes regarding, for example, the toxicity of chemicals, drugs or food ingredients. In addition, it is a general concern to implement (human) non-animal methods in basic research. Toward these efforts, there has been an ever-increasing number of Three Rs centres and platforms established over recent years - not only to develop novel methods, but also to disseminate knowledge and help to implement the Three Rs principles in policies and education. The adoption of Directive 2010/63/EU on the protection of animals used for scientific purposes gave a strong impetus to the creation of Three Rs initiatives, in the form of centres and platforms. As the first of a series of papers, this article gives an overview of the European Three Rs centres and platforms, and their historical development. The subsequent articles, to be published over the course of ATLA's 50th Anniversary year, will summarise the current focus and tasks as well as the future and the plans of the Three Rs centres and platforms. The Three Rs centres and platforms are very important points of contact and play an immense role in their respective countries as 'on the ground' facilitators of Directive 2010/63/EU. They are also invaluable for the widespread dissemination of information and for promoting implementation of the Three Rs in general
The Current Status and Work of Three Rs Centres and Platforms in Europe*
The adoption of Directive 2010/63/EU on the protection of animals used for scientific purposes has given a major push to the formation of Three Rs initiatives in the form of centres and platforms. These centres and platforms are dedicated to the so-called Three Rs, which are the Replacement, Reduction and Refinement of animal use in experiments. ATLA's 50th Anniversary year has seen the publication of two articles on European Three Rs centres and platforms. The first of these was about the progressive rise in their numbers and about their founding history; this second part focuses on their current status and activities. This article takes a closer look at their financial and organisational structures, describes their Three Rs focus and core activities (dissemination, education, implementation, scientific quality/translatability, ethics), and presents their areas of responsibility and projects in detail. This overview of the work and diverse structures of the Three Rs centres and platforms is not only intended to bring them closer to the reader, but also to provide role models and show examples of how such Three Rs centres and platforms could be made sustainable. The Three Rs centres and platforms are very important focal points and play an immense role as facilitators of Directive 2010/63/EU 'on the ground' in their respective countries. They are also invaluable for the wide dissemination of information and for promoting the implementation of the Three Rs in general
- …