317 research outputs found

    Metaplasia ossea diagnosticata su leiomioma uterino

    Get PDF
    Riportiamo un caso di metaplasia ossea in un leiomioma uterino scoperto casualmente in una donna di 53 anni operata di isterectomia totale per una neoformazione annessial

    Population genomic structure of the black coral Antipathella subpinnata in Mediterranean Vulnerable Marine Ecosystems

    Get PDF
    none8siAntipathella subpinnata (Ellis and Solander 1786) is one of the most frequently observed black corals at mesophotic depths (60–200 m) of the Mediterranean Sea, particularly in the northwestern part of the basin, where its populations can reach high densities and create forest-like aggregations, both along the coast and in offshore locations such as seamounts. Similar to other marine underwater forests, black coral gardens host a rich associated fauna and attract numerous species of commercial interest. As such, these corals are targeted by recreational and artisanal fisheries and are vulnerable to human impact due to their arborescent morphology and low growth rates. Genetic connectivity can provide valuable insight into the processes of population maintenance and replenishment following environmental disturbance and is often used as a proxy for population resilience. In our study, a restriction-site associated DNA analysis (2bRAD) was used to evaluate fine-scale population structure of the Mediterranean black coral A. subpinnata, and to understand which populations could serve as a potential source of genetic diversity for adjacent populations. Colonies from two offshore localities (a Ligurian seamount and a Tyrrhenian canyon) and four coastal populations from Liguria and Sicily were sampled and genotyped. Significant genetic differentiation was recorded between coastal and offshore localities. Moreover, offshore localities were genetically distinct from one another, while all coastal populations were characterized by panmixia. This indicates that offshore A. subpinnata gardens are potentially less resilient to human impact (i.e., demersal fishing activities) due to a limited influx of larvae from adjacent habitats. In addition, they are unlikely to supply coral propagules to coastal populations. Overall, this study highlights the vulnerability of Mediterranean A. subpinnata forests, and the importance of enforcing conservation and management measures to achieve Good Environmental Status (GES, EU Marine Strategy Framework Directive) of these valuable marine ecosystems.openTerzin M.; Paletta M.G.; Matterson K.; Coppari M.; Bavestrello G.; Abbiati M.; Bo M.; Costantini F.Terzin, M.; Paletta, M. G.; Matterson, K.; Coppari, M.; Bavestrello, G.; Abbiati, M.; Bo, M.; Costantini, F

    Experimental Fracture Model versus Osteotomy Model in Metacarpal Bone Plate Fixation

    Get PDF
    Introduction. Osteotomy or fracture models can be used to evaluate mechanical properties of fixation techniques of the hand skeleton in vitro. Although many studies make use of osteotomy models, fracture models simulate the clinical situation more realistically. This study investigates monocortical and bicortical plate fixation on metacarpal bones considering both aforementioned models to decide which method is best suited to test fixation techniques. Methods. Porcine metacarpal bones (n = 40) were randomized into 4 groups. In groups I and II bones were fractured with a modified 3-point bending test. The intact bones represented a further control group to which the other groups after fixation were compared. In groups III and IV a standard osteotomy was carried out. Bones were fixated with plates monocortically (group I, III) and bicortically (group II, IV) and tested for failure. Results. Bones fractured at a mean maximum load of 482.8 N ± 104.8 N with a relative standard deviation (RSD) of 21.7%, mean stiffness was 122.3 ± 35 N/mm. In the fracture model, there was a significant difference (P = 0.01) for maximum load of monocortically and bicortically fixed bones in contrast to the osteotomy model (P = 0.9). Discussion. In the fracture model, because one can use the same bone for both measurements in the intact state and the bone-plate construct states, the impact of inter-individual differences is reduced. In contrast to the osteotomy model there are differences between monocortical and bicortical fixations in the fracture model. Thus simulation of the in vivo situation is better and seems to be suitable for the evaluation of mechanical properties of fixation techniques on metacarpals

    concept of a maneuvering load control system and effect on the fatigue life extension

    Get PDF
    Abstract This paper presents a methodology for the conceptual design of a Maneuver Load Control system taking into account the airframe flexibility. The system, when switched on, is able to minimize the bending moment augmentation at a wing station near the wing root during an unsteady longitudinal maneuver. The reduction of the incremental wing bending moment due to maneuvers can lead to benefits such as improved pay-loads/gross weight capabilities and/or extended structural fatigue life. The maneuver is performed by following a desired vertical load factor law with elevators deflections, starting from the trim equilibrium in level flight. The system observes load factor and structural bending through accelerometers and calibrated strain sensors and then sends signals to a computer that symmetrically actuates ailerons for reducing the structural bending and elevators for compensating the perturbation to the longitudinal equilibrium. The major limit of this kind of systems appears when it has to be installed on commercial transport aircraft for reduced OEW or augmented wing aspect-ratio. In this case extensive RAMS analyses and high redundancy of the MLC related sub-systems are required by the Certification Authority. Otherwise the structural design must be performed at system off. Thus the unique actual benefit to be gained from the adoption of a MLC system on a commercial transport is the fatigue life extension. An application to a business aircraft responding to the EASA Certification Specifications, Part 25, has been performed. The aircraft used for the numerical application is considered only as a test case-study. Most of design and analysis considerations are applicable also to other aircraft, such as unmanned or military ones, although some design requirements can be clearly different. The estimation of the fatigue life extension of a structural joint (wing lower skin-stringer), located close to the wing root, has been estimated by showing the expected benefit to be gained from the adoption of such a maneuvering load control system

    Telemedicine: a new frontier for effective healthcare services

    Get PDF
    Telemedicine can be defined as the delivery of healthcare services, where distance is a critical factor, by all healthcare professionals using information and communication technologies for the exchange of valid information for diagnosis, treatment and prevention of disease and injuries, research and evaluation, and for the continuing education of healthcare providers, all in the interest of advancing the health of individuals and their communities. Such a wide definition includes many health care activities and a large number of applications have been tried, with variable degrees of interaction between all the players in the health care system. This review, starting from the need and opportunity that we are now facing to capitalize the great technological improvements in the field of information and communication technologies to improve also our health services, will illustrate the history, classification and main field of application of Telemedicine. Lastly, the available data on the application of Telemedicine for patients with respiratory diseases will be reviewed

    Nitroxide-Based Macromolecular Contrast Agents with Unprecedented Transverse Relaxivity and Stability for Magnetic Resonance Imaging of Tumors

    Get PDF
    Metal-free magnetic resonance imaging (MRI) agents could overcome the established toxicity associated with metal-based agents in some patient populations and enable new modes of functional MRI in vivo. Herein, we report nitroxidefunctionalized brush-arm star polymer organic radical contrast agents (BASP-ORCAs) that overcome the low contrast and poor in vivo stability associated with nitroxide-based MRI contrast agents. As a consequence of their unique nanoarchitectures, BASP-ORCAs possess per-nitroxide transverse relaxivities up to ∼44-fold greater than common nitroxides, exceptional stability in highly reducing environments, and low toxicity. These features combine to provide for accumulation of a sufficient concentration of BASP-ORCA in murine subcutaneous tumors up to 20 h following systemic administration such that MRI contrast on par with metal-based agents is observed. BASP-ORCAs are, to our knowledge, the first nitroxide MRI contrast agents capable of tumor imaging over long time periods using clinical high-field 1H MRI techniques. Includes Supplementary materia

    Redox-responsive branched-bottlebrush polymers for \u3ci\u3ein vivo\u3c/i\u3e MRI and fluorescence imaging

    Get PDF
    Stimuli-responsive multimodality imaging agents have broad potential in medical diagnostics. Herein, we report the development of a new class of branched-bottlebrush polymer dual-modality organic radical contrast agents—ORCAFluors—for combined magnetic resonance and near-infrared fluorescence imaging in vivo. These nitroxide radical-based nanostructures have longitudinal and transverse relaxation times that are on par with commonly used heavy-metal-based magnetic resonance imaging (MRI) contrast agents. Furthermore, these materials display a unique compensatory redox response: fluorescence is partially quenched by surrounding nitroxides in the native state; exposure to ascorbate or ascorbate/glutathione leads to nitroxide reduction and a concomitant 2- to 3.5-fold increase in fluorescence emission. This behaviour enables correlation of MRI contrast, fluorescence intensity and spin concentration with tissues known to possess high concentrations of ascorbate in mice. Our in vitro and in vivo results, along with our modular synthetic approach, make ORCAFluors a promising new platform for multimodality molecular imaging

    Comunicador pictográfico : Un proyecto de electrónica para la extensión universitaria

    Get PDF
    El presente trabajo describe la relación entre el Proyecto Final para la obtención del título de grado de Ingenieria Electrónica y su relación con los fundamentos esenciales de la Extensión Universitaria y la formación basada en la enseñanza por competencias.Centro de Técnicas Analógico-Digitale

    Electrospun PLLA Nanofiber Scaffolds and Their Use in Combination with BMP-2 for Reconstruction of Bone Defects

    Get PDF
    Introduction Adequate migration and differentiation of mesenchymal stem cells is essential for regeneration of large bone defects. To achieve this, modern graft materials are becoming increasingly important. Among them, electrospun nanofiber scaffolds are a promising approach, because of their high physical porosity and potential to mimic the extracellular matrix (ECM). Materials and Methods The objective of the present study was to examine the impact of electrospun PLLA nanofiber scaffolds on bone formation in vivo, using a critical size rat calvarial defect model. In addition we analyzed whether direct incorporation of bone morphogenetic protein 2 (BMP-2) into nanofibers could enhance the osteoinductivity of the scaffolds. Two critical size calvarial defects (5 mm) were created in the parietal bones of adult male Sprague-Dawley rats. Defects were either (1) left unfilled, or treated with (2) bovine spongiosa, (3) PLLA scaffolds alone or (4) PLLA/BMP-2 scaffolds. Cranial CT-scans were taken at fixed intervals in vivo. Specimens obtained after euthanasia were processed for histology, histomorphometry and immunostaining (Osteocalcin, BMP-2 and Smad5). Results PLLA scaffolds were well colonized with cells after implantation, but only showed marginal ossification. PLLA/BMP-2 scaffolds showed much better bone regeneration and several ossification foci were observed throughout the defect. PLLA/BMP-2 scaffolds also stimulated significantly faster bone regeneration during the first eight weeks compared to bovine spongiosa. However, no significant differences between these two scaffolds could be observed after twelve weeks. Expression of osteogenic marker proteins in PLLA/BMP-2 scaffolds continuously increased throughout the observation period. After twelve weeks osteocalcin, BMP-2 and Smad5 were all significantly higher in the PLLA/BMP-2 group than in all other groups. Conclusion Electrospun PLLA nanofibers facilitate colonization of bone defects, while their use in combination with BMP-2 also increases bone regeneration in vivo and thus combines osteoconductivity of the scaffold with the ability to maintain an adequate osteogenic stimulus
    corecore