185 research outputs found

    The connexin43 carboxyl terminus and cardiac gap junction organization

    Get PDF
    AbstractThe precise spatial order of gap junctions at intercalated disks in adult ventricular myocardium is thought vital for maintaining cardiac synchrony. Breakdown or remodeling of this order is a hallmark of arrhythmic disease of the heart. The principal component of gap junction channels between ventricular cardiomyocytes is connexin43 (Cx43). Protein–protein interactions and modifications of the carboxyl-terminus of Cx43 are key determinants of gap junction function, size, distribution and organization during normal development and in disease processes. Here, we review data on the role of proteins interacting with the Cx43 carboxyl-terminus in the regulation of cardiac gap junction organization, with particular emphasis on Zonula Occludens-1. The rapid progress in this area suggests that in coming years we are likely to develop a fuller understanding of the molecular mechanisms causing pathologic remodeling of gap junctions. With these advances come the promise of novel approach to the treatment of arrhythmia and the prevention of sudden cardiac death. This article is part of a Special Issue entitled: The Communicating junctions, composition, structure and characteristics

    Antiferrodistortive phase transition in EuTiO3

    Full text link
    X-ray diffraction, dynamical mechanical analysis and infrared reflectivity studies revealed an antiferrodistortive phase transition in EuTiO3 ceramics. Near 300K the perovskite structure changes from cubic Pm-3m to tetragonal I4/mcm due to antiphase tilting of oxygen octahedra along the c axis (a0a0c- in Glazer notation). The phase transition is analogous to SrTiO3. However, some ceramics as well as single crystals of EuTiO3 show different infrared reflectivity spectra bringing evidence of a different crystal structure. In such samples electron diffraction revealed an incommensurate tetragonal structure with modulation wavevector q ~ 0.38 a*. Extra phonons in samples with modulated structure are activated in the IR spectra due to folding of the Brillouin zone. We propose that defects like Eu3+ and oxygen vacancies strongly influence the temperature of the phase transition to antiferrodistortive phase as well as the tendency to incommensurate modulation in EuTiO3.Comment: PRB, in pres

    Orthorhombic versus monoclinic symmetry of the charge-ordered state of NaV2O5

    Full text link
    High-resolution X-ray diffraction data show that the low-temperature superstructure of alpha-NaV2O5 has an F-centered orthorhombic 2a x 2b x 4c superlattice. A structure model is proposed, that is characterized by layers with zigzag charge order on all ladders and stacking disorder, such that the averaged structure has space group Fmm2. This model is in accordance with both X-ray scattering and NMR data. Variations in the stacking order and disorder offer an explanation for the recently observed devils staircase of the superlattice period along c.Comment: REVTEX, 4 pages including 2 figures, shortened, submitted to PR

    Third structure determination by powder diffractometry round robin (SDPDRR-3)

    Get PDF
    The results from a third structure determination by powder diffractometry (SDPD) round robin are discussed. From the 175 potential participants having downloaded the powder data, nine sent a total of 12 solutions (8 and 4 for samples 1 and 2, respectively, a tetrahydrated calcium tartrate and a lanthanum tungstate). Participants used seven different computer programs for structure solution (ESPOIR, EXPO, FOX, PSSP, SHELXS, SUPERFLIP, and TOPAS), applying Patterson, direct methods, direct space methods, and charge flipping approach. It is concluded that solving a structure from powder data remains a challenge, at least one order of magnitude more difficult than solving a problem with similar complexity from single-crystal data. Nevertheless, a few more steps in the direction of increasing the SDPD rate of success were accomplished since the two previous round robins: this time, not only the computer program developers were successful but also some users. No result was obtained from crystal structure prediction expert

    The reductive activation of CO2 across a Ti═Ti double bond: synthetic, structural, and mechanistic studies

    Get PDF
    [Image: see text] The reactivity of the bis(pentalene)dititanium double-sandwich compound Ti(2)Pn(†)(2) (1) (Pn(†) = 1,4-{Si(i)Pr(3)}(2)C(8)H(4)) with CO(2) is investigated in detail using spectroscopic, X-ray crystallographic, and computational studies. When the CO(2) reaction is performed at −78 °C, the 1:1 adduct 4 is formed, and low-temperature spectroscopic measurements are consistent with a CO(2) molecule bound symmetrically to the two Ti centers in a μ:η(2),η(2) binding mode, a structure also indicated by theory. Upon warming to room temperature the coordinated CO(2) is quantitatively reduced over a period of minutes to give the bis(oxo)-bridged dimer 2 and the dicarbonyl complex 3. In situ NMR studies indicated that this decomposition proceeds in a stepwise process via monooxo (5) and monocarbonyl (7) double-sandwich complexes, which have been independently synthesized and structurally characterized. 5 is thermally unstable with respect to a μ-O dimer in which the Ti–Ti bond has been cleaved and one pentalene ligand binds in an η(8) fashion to each of the formally Ti(III) centers. The molecular structure of 7 shows a “side-on” bound carbonyl ligand. Bonding of the double-sandwich species Ti(2)Pn(2) (Pn = C(8)H(6)) to other fragments has been investigated by density functional theory calculations and fragment analysis, providing insight into the CO(2) reaction pathway consistent with the experimentally observed intermediates. A key step in the proposed mechanism is disproportionation of a mono(oxo) di-Ti(III) species to yield di-Ti(II) and di-Ti(IV) products. 1 forms a structurally characterized, thermally stable CS(2) adduct 8 that shows symmetrical binding to the Ti(2) unit and supports the formulation of 4. The reaction of 1 with COS forms a thermally unstable complex 9 that undergoes scission to give mono(μ-S) mono(CO) species 10. Ph(3)PS is an effective sulfur transfer agent for 1, enabling the synthesis of mono(μ-S) complex 11 with a double-sandwich structure and bis(μ-S) dimer 12 in which the Ti–Ti bond has been cleaved

    Study of the pressure effects in TiOCl by ab initio calculations

    Full text link
    Electronic structure calculations on the low dimensional spin-1/2 compound TiOCl were performed at several pressures in the orthorhombic phase, finding that the structure is quasi-one-dimensional. The Ti3+ (d1) ions have one t2g orbital occupied (dyz) with a large hopping integral along the b direction of the crystal. The most important magnetic coupling is Ti-Ti along the b axis. The transition temperature (Tc) has a linear evolution with pressure, and at about 10 GPa this Tc is close to room temperature, leading to a room temperature spin-Peierls insulator-insulator transition, with an important reduction of the charge gap in agreement with the experiment. On the high-pressure monoclinic phase, TiOCl presents two possible dimerized structures, with a long or short dimerization. Long dimerized state occurs above 15 GPa, and below this pressure the short dimerized structure is the more stable phase.Comment: 3 pages, 3 embedded figures, 1 table. A. Pi\~neiro, et al.,J. Magn. Magn. Mater. (2009) (accepted

    Soft Chemical Control of Superconductivity in Lithium Iron Selenide Hydroxides Li1x_{1–x}Fex_x(OH)Fe1y_{1–y}Se

    Get PDF
    Hydrothermal synthesis is described of layered lithium iron selenide hydroxides Li1x_{1–x}Fex(OH)Fe1y_{1–y}Se (x\sim0.2; 0.02 < yy < 0.15) with a wide range of iron site vacancy concentrations in the iron selenide layers. This iron vacancy concentration is revealed as the only significant compositional variable and as the key parameter controlling the crystal structure and the electronic properties. Single crystal X-ray diffraction, neutron powder diffraction, and X-ray absorption spectroscopy measurements are used to demonstrate that superconductivity at temperatures as high as 40 K is observed in the hydrothermally synthesized samples when the iron vacancy concentration is low (yy < 0.05) and when the iron oxidation state is reduced slightly below +2, while samples with a higher vacancy concentration and a correspondingly higher iron oxidation state are not superconducting. The importance of combining a low iron oxidation state with a low vacancy concentration in the iron selenide layers is emphasized by the demonstration that reductive postsynthetic lithiation of the samples turns on superconductivity with critical temperatures exceeding 40 K by displacing iron atoms from the Li1x_{1–x}Fex_x(OH) reservoir layer to fill vacancies in the selenide layer

    Rh-POP Pincer Xantphos Complexes for C-S and C-H Activation. Implications for Carbothiolation Catalysis

    No full text
    The neutral Rh­(I)–Xantphos complex [Rh­(κ<sup>3</sup>-<sub>P,O,P</sub>-Xantphos)­Cl]<sub><i>n</i></sub>, <b>4</b>, and cationic Rh­(III) [Rh­(κ<sup>3</sup>-<sub>P,O,P</sub>-Xantphos)­(H)<sub>2</sub>]­[BAr<sup>F</sup><sub>4</sub>], <b>2a</b>, and [Rh­(κ<sup>3</sup>-<sub>P,O,P</sub>-Xantphos-3,5-C<sub>6</sub>H<sub>3</sub>(CF<sub>3</sub>)<sub>2</sub>)­(H)<sub>2</sub>]­[BAr<sup>F</sup><sub>4</sub>], <b>2b</b>, are described [Ar<sup>F</sup> = 3,5-(CF<sub>3</sub>)<sub>2</sub>C<sub>6</sub>H<sub>3</sub>; Xantphos = 4,5-bis­(diphenylphosphino)-9,9-dimethylxanthene; Xantphos-3,5-C<sub>6</sub>H<sub>3</sub>(CF<sub>3</sub>)<sub>2</sub> = 9,9-dimethylxanthene-4,5-bis­(bis­(3,5-bis­(trifluoromethyl)­phenyl)­phosphine]. A solid-state structure of <b>2b</b> isolated from C<sub>6</sub>H<sub>5</sub>Cl solution shows a κ<sup>1</sup>-chlorobenzene adduct, [Rh­(κ<sup>3</sup>-<sub>P,O,P</sub>-Xantphos-3,5-C<sub>6</sub>H<sub>3</sub>(CF<sub>3</sub>)<sub>2</sub>)­(H)<sub>2</sub>(κ<sup>1</sup>-ClC<sub>6</sub>H<sub>5</sub>)]­[BAr<sup>F</sup><sub>4</sub>], <b>3</b>. Addition of H<sub>2</sub> to <b>4</b> affords, crystallographically characterized, [Rh­(κ<sup>3</sup>-<sub>P,O,P</sub>-Xantphos)­(H)<sub>2</sub>Cl], <b>5</b>. Addition of diphenyl acetylene to <b>2a</b> results in the formation of the C–H activated metallacyclopentadiene [Rh­(κ<sup>3</sup>-<sub>P,O,P</sub>-Xantphos)­(ClCH<sub>2</sub>Cl)­(σ,σ-(C<sub>6</sub>H<sub>4</sub>)­C­(H)CPh)]­[BAr<sup>F</sup><sub>4</sub>], <b>7</b>, a rare example of a crystallographically characterized Rh–dichloromethane complex, alongside the Rh­(I) complex <i>mer</i>-[Rh­(κ<sup>3</sup>-<sub>P,O,P</sub>-Xantphos)­(η<sup>2</sup>-PhCCPh)]­[BAr<sup>F</sup><sub>4</sub>], <b>6</b>. Halide abstraction from [Rh­(κ<sup>3</sup>-<sub>P,O,P</sub>-Xantphos)­Cl]<sub><i>n</i></sub> in the presence of diphenylacetylene affords <b>6</b> as the only product, which in the solid state shows that the alkyne binds perpendicular to the κ<sup>3</sup>-POP Xantphos ligand plane. This complex acts as a latent source of the [Rh­(κ<sup>3</sup>-<sub>P,O,P</sub>-Xantphos)]<sup>+</sup> fragment and facilitates <i>ortho</i>-directed C–S activation in a number of 2-arylsulfides to give <i>mer</i>-[Rh­(κ<sup>3</sup>-<sub>P,O,P</sub>-Xantphos)­(σ,κ<sup>1</sup>-Ar)­(SMe)]­[BAr<sup>F</sup><sub>4</sub>] (Ar = C<sub>6</sub>H<sub>4</sub>COMe, <b>8</b>; C<sub>6</sub>H<sub>4</sub>(CO)­OMe, <b>9</b>; C<sub>6</sub>H<sub>4</sub>NO<sub>2</sub>, <b>10</b>; C<sub>6</sub>H<sub>4</sub>CNCH<sub>2</sub>CH<sub>2</sub>O, <b>11</b>; C<sub>6</sub>H<sub>4</sub>C<sub>5</sub>H<sub>4</sub>N, <b>12</b>). Similar C–S bond cleavage is observed with allyl sulfide, to give <i>fac</i>-[Rh­(κ<sup>3</sup>-<sub>P,O,P</sub>-Xantphos)­(η<sup>3</sup>-C<sub>3</sub>H<sub>5</sub>)­(SPh)]­[BAr<sup>F</sup><sub>4</sub>], <b>13</b>. These products of C–S activation have been crystallographically characterized. For <b>8</b> in situ monitoring of the reaction by NMR spectroscopy reveals the initial formation of <i>fac</i>-κ<sup>3</sup>-<b>8</b>, which then proceeds to isomerize to the <i>mer</i>-isomer. With the <i>para</i>-ketone aryl sulfide, 4-SMeC <sub>6</sub>H<sub>4</sub>COMe, C–H activation <i>ortho</i> to the ketone occurs to give <i>mer</i>-[Rh­(κ<sup>3</sup>-<sub>P,O,P</sub>-Xantphos)­(σ,κ<sup>1</sup>-4-(COMe)­C<sub>6</sub>H<sub>3</sub>SMe)­(H)]­[BAr<sup>F</sup><sub>4</sub>], <b>14</b>. The temporal evolution of carbothiolation catalysis using <i>mer</i>-κ<sup>3</sup>-<b>8</b>, and phenyl acetylene and 2-(methylthio)­acetophenone substrates shows initial fast catalysis and then a considerably slower evolution of the product. We suggest that the initially formed <i>fac</i>-isomer of the C–S activation product is considerably more active than the <i>mer</i>-isomer (i.e., <i>mer</i>-<b>8</b>), the latter of which is formed rapidly by isomerization, and this accounts for the observed difference in rates. A likely mechanism is proposed based upon these data

    Guidance on Monitoring of Marine Litter in European Seas

    Get PDF
    This publication is a Reference Report by the Joint Research Centre of the European Commission.The MSFD Technical Subgroup on Marine Litter was tasked to deliver guidance so that European Member States could initiate programmes for monitoring of Descriptor 10 of the MSFD. The present document provides the recommendations and information needed to commence the monitoring required for marine litter, including methodological protocols and categories of items to be used for the assessment of litter on the Beach, Water Column, Seafloor and Biota, including a special section on Microparticles
    corecore